Advertisement

Limnology

pp 1–9 | Cite as

Analysis of mtDNA variability in closely related Baikal sponge species for new barcoding marker development

  • A. S. YakhnenkoEmail author
  • V. B. Itskovich
Special Feature: Original Article Freshwater Ecosystems - Key Problems and New Findings from Russian Lakes including Lake Baikal

Abstract

Morphology-based identification and classification of sponge species is complicated, because their morphological features are highly variable. Therefore, molecular markers are ideal tools for delimiting sponge species. In this study, we compared the variability of two sections of COI (the standard 5′-end fragment and the I3-M11 fragment) for closely related Baikal sponge species. Although the mean interspecific variability for both fragments was higher than the mean intraspecies divergence, these values overlapped in some cases. Based on the results of the study, we concluded that the I3-M11 fragment and the standard 5′-end fragment were not suitable when used in the canonical fashion for identifying Baikal species. However, the consistency in differences between lineages in number of non-synonymous substitutions of the two investigated COI fragments indicated that nucleotide substitutions in the I3-M11 fragment of COI are evolutionarily more informative for delimiting species. We also detected new divergent haplotypes of Baikal sponges using these markers. Seven new haplotypes in the standard 5′-end fragment of COI and 10 in the I3-M11 fragment were observed. These findings potentially indicate cryptic speciation in Baikal sponges, and further study is required to elucidate how this cryptic speciation evolved.

Keywords

COI Porifera Freshwater sponge Genetics 

Notes

Acknowledgements

We thank Mallory Eckstut, PhD, from Edanz Group (www.edanzediting.com/ac) and Nathan Kenny, PhD, from Natural History Museum, for editing a draft of this manuscript.

Funding

The work was funded by Basic funding, project number 0345-2019-0002 and Russian Foundation for Basic Research (RFBR), project number 17-04-01598 (DNA sequencing) and RFBR and the Government of the Irkutsk region, project number 17-44-388103 p_a (DNA sequencing).

References

  1. Belikov SI et al (2019) Diversity and shifts of the bacterial community associated with Baikal sponge mass mortalities. PLoS ONE 14(3):e0213926.  https://doi.org/10.1371/journal.pone.0213926 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bell JJ, Barnes DKA, Turner JR (2002) The importance of micro and macro morphological variation in adaptation of a sublittoral demosponge to current extremes. Mar Biol 140(1):75–81.  https://doi.org/10.1007/s002270100665 CrossRefGoogle Scholar
  3. Cárdenas P, Xavier J, Secher Tendal O et al (2007) Redescription and resurrection of Pachymatisma normani (Demospongiae: Geodiidae), with remarks on the genus Pachymatisma. J Mar Biol Ass UK 87:1511–1525.  https://doi.org/10.1017/s0025315407058286 CrossRefGoogle Scholar
  4. Duran SM, Pascual M, Turon X (2004) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35.  https://doi.org/10.1007/s00227-003-1178-5 CrossRefGoogle Scholar
  5. Efremova CM (2001) Annotated list of fauna of Lake Baikal and its catchment basin, Book 1. (in Russian) Nauka, MoscowGoogle Scholar
  6. Efremova CM (2003) Annotated list of fauna of Lake Baikal and its catchment basin, Book 2. (in Russian) Nauka, MoscowGoogle Scholar
  7. Ekins M, Erpenbeck D, Wörheide G, Hooper JNA (2016) A new species of lithistid sponge hiding within the Isabella mirabilis species complex (Porifera: Demospongiae: Tetractinellida) from seamounts of the Norfolk Ridge. Zootaxa 4136(3):433–460.  https://doi.org/10.11646/zootaxa.4136.3.2 CrossRefPubMedGoogle Scholar
  8. Erpenbeck D, Hooper JNA, Wörheide G (2006) CO1phylogenies in diploblasts and the ‘Barcoding of Life’—are we sequencing a suboptimal partition? Mol Ecol Notes 6:550–553.  https://doi.org/10.1111/j.1471-8286.2005.01259.x CrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.  https://doi.org/10.2307/2408678 CrossRefGoogle Scholar
  10. Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  11. Gustinich S, Manfioletti G, Del Sal G et al (1991) A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11:298–300Google Scholar
  12. Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS One 7(9):e45170.  https://doi.org/10.1371/journal.pone.0045170 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  14. Hebert PDN, Cywinska A, Ball SL et al (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270:313–332.  https://doi.org/10.1098/rspb.2002.2218 CrossRefGoogle Scholar
  15. Hooper J, van Soest RWM (2002) Systema porifera. Springer, New York.  https://doi.org/10.1007/978-1-4615-0747-5 CrossRefGoogle Scholar
  16. Huelsenbeck JP, Ranala B (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol 53:904–913.  https://doi.org/10.1080/10635150490522629 CrossRefPubMedGoogle Scholar
  17. Itskovich VB (2017) Endemic lake baikal sponges from deep water. 2: taxonomy and bathymetric distribution. Zootaxa 4236(2): 335–342.  https://doi.org/10.11646/zootaxa.4236.2.8 CrossRefGoogle Scholar
  18. Itskovich VB, Belikov SI, Efremova SM et al (2006) Monophyletic origin of freshwater sponges in ancient lakes based on partial structures of COXI gene. Hydrobiologia 568:155–159.  https://doi.org/10.1007/s10750-006-0320-z CrossRefGoogle Scholar
  19. Itskovich VB, Kaluzhnaya OV, Veynberg E, Erpenbeck D (2015) Endemic Lake Baikal sponges from deep water. 1: potential cryptic speciation and discovery of living species known only from fossils. Zootaxa 3990(1):123–137.  https://doi.org/10.11646/zootaxa.3990.1.7
  20. Itskovich VB et al (2018) Heat shock protein 70 (Hsp70) response to elevated temperatures in the endemic Baikal sponge Lubomirskia baicalensis. Ecol Ind 88:1.  https://doi.org/10.1016/j.ecolind.2017.12.055 CrossRefGoogle Scholar
  21. Kaluzhnaya OV, Itskovich VB (2015) Bleaching of baikalian sponge affects the taxonomic composition of symbiotic microorganisms. Genetika 51(11):1335–1340.  https://doi.org/10.1134/S1022795415110071 CrossRefPubMedGoogle Scholar
  22. Khanaev IV et al (2017) Current state of the sponge fauna (Porifera: Lubomirskiidae) of Lake Baikal: sponge disease and the problem of conservation of diversity. J Great Lakes Res.  https://doi.org/10.1016/j.jglr.2017.10.004 CrossRefGoogle Scholar
  23. López-Legentil S, Pawlik JR (2009) Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI. Coral Reefs 28:157–165.  https://doi.org/10.1007/s00338-008-0430-3 CrossRefGoogle Scholar
  24. Maikova O, Khanaev I, Belikov S, Sherbakov D (2015) Two hypotheses of the evolution of endemic sponges in Lake Baikal (Lubomirskiidae). J Zool Syst Evol Res 53(2):175–179.  https://doi.org/10.1111/jzs.12086 CrossRefGoogle Scholar
  25. Masuda Y (2009) Studies on the taxonomy and distribution of freshwater sponges in Lake Baikal. Prog Mol Subcell Biol 47:81–110.  https://doi.org/10.1007/978-3-540-88552-8_4 CrossRefPubMedGoogle Scholar
  26. Palumbi SR (1986) How body plans limit acclimation: responses of a demosponge to wave force. Ecology 1:208–214CrossRefGoogle Scholar
  27. Philippe H, Derelle R, Lopez P et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19(8):706–712.  https://doi.org/10.1016/j.cub.2009.02.052 CrossRefPubMedGoogle Scholar
  28. Poppe J, Sutcliffe P, Hooper JNA et al (2010) COI barcoding reveals new clades and radiation patterns of indo-pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida). PLoS One 5(4):e9950.  https://doi.org/10.1371/journal.pone.0009950 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Raleigh J, Redmond NE, Delahan E et al (2007) Mitochondrial Cytochrome oxidase 1 phylogeny supports alternative taxonomic scheme for the marine Haplosclerida. J Mar Biol Assoc UK 87:1577–1584.  https://doi.org/10.1017/S0025315407058341 CrossRefGoogle Scholar
  30. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefGoogle Scholar
  31. Rusinyok OT et al (2012) Baikal studying. (in Russian) Nauka, NovosibirskGoogle Scholar
  32. Schröder HC, Efremova SM, Itskovich VB et al (2003) Molecular phylogeny of the freshwater sponges in Lake Baikal. J Zool Syst Evol Res 41:80–86.  https://doi.org/10.1046/j.1439-0469.2003.00199.x CrossRefGoogle Scholar
  33. Setiawan E, De Voogd N, Swierts T et al (2015) MtDNA diversity of the Indonesian giant barrel sponge Xestospongia testudinaria (Porifera: Haplosclerida)—implications from partial cytochrome oxidase 1 sequences. J Mar Biol Assoc UK 96(2):323–332.  https://doi.org/10.1017/S0025315415001149 CrossRefGoogle Scholar
  34. Shearer TL, Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487.  https://doi.org/10.1046/j.1365-294X.2002.01652.x CrossRefPubMedGoogle Scholar
  35. Swierts T, Peijnenburg KTCA, de Leeuw C et al (2013) Lock, stock and two different barrels: comparing the genetic composition of morphotypes of the Indo-Pacific sponge Xestospongia testudinaria. PLoS One 8:e74396.  https://doi.org/10.1371/journal.pone.0074396 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Swierts T, Peijnenburg KTCA, de Leeuw CA et al (2017) Globally intertwined evolutionary history of giant barrel sponges. Coral Reefs 36:933–945.  https://doi.org/10.1007/s00338-017-1585-6 CrossRefGoogle Scholar
  37. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci (USA) 101:11030–11035.  https://doi.org/10.1073/pnas.0404206101 CrossRefGoogle Scholar
  38. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Timoshkin OA et al (2016) Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): is the site of the world’s greatest freshwater biodiversity in danger? J Great Lakes Res 42:487–497.  https://doi.org/10.1016/j.jglr.2016.02.011 CrossRefGoogle Scholar
  40. Watkins RF, Beckenbach AT (1999) Partial sequence of a sponge mitochondrial genome reveals sequence similarity to cnidaria in cytochrome oxidase subunit II and the large ribosomal RNA subunit. J Mol Evol 48:542–554CrossRefGoogle Scholar
  41. Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912.  https://doi.org/10.1007/s00227-005-0134-y CrossRefGoogle Scholar
  42. Wörheide G, Degnan BM, Hooper JNA (2000) Population phylogenetics of the common coral reef sponges Leucetta spp. and Pericharax spp. (Porifera: Calcarea) from the Great Barrier Reef and Vanuatu. In: Abstracts, 9th Int. Coral Reef Symp. BaliGoogle Scholar
  43. Xavier JR, van Soest RWM, Breeuwer JAJ et al (2010) Phylogeography, genetic diversity and structure of the poecilosclerid sponge Phorbas fictitius at oceanic islands. Contributions to Zoology 79:119–212.  https://doi.org/10.1371/journal.pone.0075996 CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Limnology 2019

Authors and Affiliations

  1. 1.Limnological Institute SB RASIrkutskRussia

Personalised recommendations