Advertisement

Limnology

pp 1–11 | Cite as

Long-term effects of nutrient changes on rotifer communities in a subtropical lake

  • Yun Li
  • Le Liu
  • Suzhen Cui
  • Feizhou ChenEmail author
Research paper

Abstract

External nutrient loading has a major influence on the abundance, composition and diversity of zooplankton communities. To clarify how the reduction of nutrient loading during lake restoration interacts with other abiotic and biotic factors and how the interactive factors affect long-term changes in rotifer communities, we analyzed the relationships between the rotifer communities and environmental factors using a 17-year dataset. After the reduction of nutrients, both the abundance and biomass of rotifers declined, and the dominant rotifers changed from eutrophic-tolerant species to less tolerant ones. The lower TN:TP ratio that was caused by the imbalanced decrease in TN and TP after restoration promoted cyanobacteria, which negatively related to the resource-use efficiency of rotifers. Moreover, seasonal differences in the Shannon–Wiener index–TN relationships and the decrease in the Pielou index with the increase in water temperature implied there were interactive effects of water temperature and nutrients on species diversity. The study concluded that changes in rotifer abundance and community composition were mainly related to TN, but the changes in species diversity were mainly related to the interactive effects of the TN:TP ratio, water temperature and food quality. Our findings highlighted the effects caused by imbalanced nutrient changes on species diversity.

Keywords

Nutrient loading Rotifer plankton Eutrophication Cyanobacteria Species diversity Temperature 

Notes

Acknowledgements

We thank the Taihu Laboratory for Lake Ecosystem Research for supplying data on the abiotic parameters and phytoplankton. We are grateful to Tingting Shu for collecting data. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant numbers XDB310403), the National Natural Science Foundation of China (no. 31670463, 31870448 and 31872208), the Project of 135 program of NIGLAS (NIGLAS2018GH03) and the start-up funds from the Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (NIGLAS2017QD09). Y. Li and F.Z. Chen designed the study; Y. Li wrote the report; Y. Li, L. Liu, S.Z. Cui and F.Z. Chen collected and analyzed the data.

References

  1. Andrew TE, Andrew J (2005) Seasonality of rotifers and temperature in Lough Neagh, N. Ireland. Hydrobiologia 546(1):451–455CrossRefGoogle Scholar
  2. Auer B, Elzer U, Arndt H (2004) Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J Plankton Res 26(6):697–709CrossRefGoogle Scholar
  3. Azémar F, Maris T, Mialet B et al (2010) Rotifers in the Scheldt estuary (Belgium): a test of taxonomic relevance. J Plankton Res 32(7):981–997CrossRefGoogle Scholar
  4. Azevedo DJS, Barbosa JEL, Gomes WIA et al (2015) Diversity measures in macroinvertebrate and zooplankton communities related to the trophic status of subtropical reservoirs: contradictory or complementary responses? Ecol Indic 50:135–149CrossRefGoogle Scholar
  5. Badosa A, Frisch D, Arechederra A et al (2010) Recovery of zooplankton diversity in a restored Mediterranean temporary marsh in Donana National Park (SW Spain). Hydrobiologia 654(1):67–82CrossRefGoogle Scholar
  6. Balvay G, Laurent M (1990) Long-term quantitative evolution of rotifers during the eutrophication in Lake Geneva. Aquat Sci 52(2):162–175CrossRefGoogle Scholar
  7. Barbiero RP, Warren GJ (2011) Rotifer communities in the Laurentian Great Lakes, 1983–2006 and factors affecting their composition. J Great Lakes Res 37(3):528–540CrossRefGoogle Scholar
  8. Bērziņš B, Pejler B (1987) Rotifer occurrence in relation to pH. Hydrobiologia 147(1):107–116CrossRefGoogle Scholar
  9. Bērzinš B, Pejler B (1989a) Rotifer occurrence in relation to temperature. Hydrobiologia 175(3):223–231CrossRefGoogle Scholar
  10. Bērziņš B, Pejler B (1989b) Rotifer occurrence and trophic degree. Hydrobiologia 182(2):171–180CrossRefGoogle Scholar
  11. Bonecker CC, Simoes NR, Minte-Vera CV et al (2013) Temporal changes in zooplankton species diversity in response to environmental changes in an alluvial valley. Limnologica 43(2):114–121CrossRefGoogle Scholar
  12. Brandl Z (2005) Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546(1):475–489CrossRefGoogle Scholar
  13. Castro BB, Antunes SC, Pereira R et al (2005) Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia 543(1):221–232CrossRefGoogle Scholar
  14. Chalkia E, Kehayias G (2013) Zooplankton and environmental factors of a recovering eutrophic lake (Lysimachia Lake, Western Greece). Biologia 68(3):459–469CrossRefGoogle Scholar
  15. Chen FZ, Shu TT, Jeppesen E et al (2013) Restoration of a subtropical eutrophic shallow lake in China: effects on nutrient concentrations and biological communities. Hydrobiologia 718(1):59–71CrossRefGoogle Scholar
  16. Chiang S, Du N (1979) Fauna sinica, Crustacea, freshwater Cladocera. Academica Sinica, Beijing (in Chinese) Google Scholar
  17. Dodson SI, Arnott SE, Cottingham KL (2000) The relationship in lake communities between primary productivity and species richness. Ecology 81(10):2662–2679CrossRefGoogle Scholar
  18. Domis LND, Van de Waal DB, Helmsing NR et al (2014) Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics. Ecology 95(6):1485–1495CrossRefGoogle Scholar
  19. Duggan I, Green J, Shiel R (2001) Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia 446(1):155–164CrossRefGoogle Scholar
  20. Erwin DH (2009) Climate as a driver of evolutionary change. Curr Biol 19(14):R575–R583CrossRefGoogle Scholar
  21. Filstrup CT, Hillebrand H, Heathcote AJ et al (2014) Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities. Ecol Lett 17(4):464–474CrossRefGoogle Scholar
  22. Gallet R, Alizon S, Comte PA et al (2007) Predation and disturbance interact to shape prey species diversity. Am Nat 170(1):143–154CrossRefGoogle Scholar
  23. Gannon JE, Stemberger RS (1978) Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans Am Microsc Soc 97(1):16–35CrossRefGoogle Scholar
  24. Gilbert JJ (1985) Competition between rotifers and Daphnia. Ecology 66(6):1943–1950CrossRefGoogle Scholar
  25. Gilbert JJ (1988) Suppression of rotifer populations by Daphnia - a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol Oceanogr 33(6):1286–1303CrossRefGoogle Scholar
  26. Gilbert J, Bogdan KG (1984) Rotifer grazing: in situ studies on selectivity and rates. In: AAAS selected symposia, 85, AAAS National Annual Meeting Toronto, CanadaGoogle Scholar
  27. Ginger LJ, Zimmer KD, Herwig BR et al (2017) Watershed vs within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes. Ecol Appl 27(7):2155–2169CrossRefGoogle Scholar
  28. Gunn IDM, O’Hare M, Maitland P et al (2012) Long-term trends in Loch Leven invertebrate communities. Hydrobiologia 68(1):1–14Google Scholar
  29. Herzig A (1987) The analysis of planktonic rotifer populations: a plea for long-term investigations. Hydrobiologia 147(1):163–180CrossRefGoogle Scholar
  30. Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163(2):192–211CrossRefGoogle Scholar
  31. Hu H (2006) The freshwater algae of China: systematics, taxonomy and ecology. Science Press, Beijing (in Chinese) Google Scholar
  32. Huo SL, Xi BD, Su J et al (2013) Determining reference conditions for TN, TP, SD and Chl a in eastern plain ecoregion lakes, China. J Environ Sci 25(5):1001–1006CrossRefGoogle Scholar
  33. Jeppesen E, Sondergaard M, Jensen JP et al (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50(10):1747–1771CrossRefGoogle Scholar
  34. Jin X, Tu Q (1990) The standard methods for observation and analysis of lake eutrophication. China Environmental Science Press, Beijing (in Chinese) Google Scholar
  35. Jochimsen MC, Kuemmerlin R, Straile D (2012) Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication. Ecol Lett 16(1):81–89CrossRefGoogle Scholar
  36. Kaushik S, Saksena D (1995) Trophic status and rotifer fauna of certain water bodies in Central India. J Environ Biol 16(4):283–291Google Scholar
  37. Koste W, Voigt M (1978) Rotatoria, die Rädertiere Mitteleuropas: Überordnung Monogononta: ein Bestimmungswerk. Gebrüder BorntraegerGoogle Scholar
  38. Kosten S, Huszar VL, Bécares E et al (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18(1):118–126CrossRefGoogle Scholar
  39. Krzton W, Pudas K, Pociecha A et al (2017) Microcystins affect zooplankton biodiversity in oxbow lakes. Environ Toxicol Chem 36(1):165–174CrossRefGoogle Scholar
  40. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. Li Y, Xie P, Zhang J et al (2017) Effects of filter-feeding planktivorous fish and cyanobacteria on structuring the zooplankton community in the eastern plain lakes of China. Ecol Eng 99:238–245CrossRefGoogle Scholar
  42. Lin-lin C, Guang-wei Z, Yong-ping W et al (2011) Influences of comprehensive treatment on water quality in Wuli Bay of Taihu Lake. J Hohai Univ (Natural Sciences) 39(5):482–488Google Scholar
  43. Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346CrossRefGoogle Scholar
  44. MacIsaac HJ, Gilbert JJ (1989) Competition between rotifers and cladocerans of different body sizes. Oecologia 81(3):295–301CrossRefGoogle Scholar
  45. Mäemets A (1983) Rotifers as indicators of lake types in Estonia. Hydrobiologia 104(1):357–361CrossRefGoogle Scholar
  46. May L, O’Hare M (2005) Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotland, UK. Hydrobiologia 546:397–404CrossRefGoogle Scholar
  47. May L, Spears BM, Dudley BJ et al (2014) The response of the rotifer community in Loch Leven, UK, to changes associated with a 60% reduction in phosphorus inputs from the catchment. Int Rev Hydrobiol 99(1–2):65–71CrossRefGoogle Scholar
  48. Mikschi E (1989) Rotifer distribution in relation to temperature and oxygen content. Hydrobiologia 186(1):209–214CrossRefGoogle Scholar
  49. Oltra R, Alfonso MT, Sahuquillo M et al (2001) Increase of rotifer diversity after sewage diversion in the hypertrophic lagoon, Albufera of Valencia, Spain. Hydrobiologia 446:213–220CrossRefGoogle Scholar
  50. O’Neil JM, Davis TW, Burford MA et al (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334CrossRefGoogle Scholar
  51. Piscia R, Tabozzi S, Bettinetti R et al (2016) Unexpected increases in rotifer resting egg abundances during the period of contamination of Lake Orta. J Limnol 75:76–85Google Scholar
  52. Ptacnik R, Lepisto L, Willen E et al (2008) Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquat Ecol 42(2):227–236CrossRefGoogle Scholar
  53. Qian F, Xi Y, Wen X et al (2007) Eutrophication impact on community structure and species diversity of rotifers in five lakes of Anhui. Biodivers Sci 15(4):344–355CrossRefGoogle Scholar
  54. Radwan S (1984) The influence of some abiotic factors on the occurrence of rotifers of Łęzna and Wŀodawa Lake District. Hydrobiologia 112(2):117–124CrossRefGoogle Scholar
  55. Ronneberger D, Kasprzak P, Krienitz L (1993) Long-term changes in the rotifer fauna after biomanipulation in Haussee (Feldberg, Germany, Mecklenburg-Vorpommern) and its relationship to the crustacean and phytoplankton communities. Hydrobiologia 255(1):297–304CrossRefGoogle Scholar
  56. Saint-Beat B, Baird D, Asmus H et al (2015) Trophic networks: how do theories link ecosystem structure and functioning to stability properties? A review. Ecol Indic 52:458–471CrossRefGoogle Scholar
  57. Saleem M, Fetzer I, Dormann CF et al (2012) Predator richness increases the effect of prey diversity on prey yield. Nat Commun 3:7CrossRefGoogle Scholar
  58. Schindler DW, Hecky RE, Findlay DL et al (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci USA 105(32):11254–11258CrossRefGoogle Scholar
  59. Segers H (2008) Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595:49–59CrossRefGoogle Scholar
  60. Shao Z, Xie P, Zhuge Y (2001) Long-term changes of planktonic rotifers in a subtropical Chinese lake dominated by filter-feeding fishes. Freshw Biol 46(7):973–986CrossRefGoogle Scholar
  61. Shen J, Tai A, Zhang C et al (1979) Fauna sinica, Crustacea, freshwater Copepoda. Academia Sinica, Beijing (in Chinese) Google Scholar
  62. Sládeček V (1983) Rotifers as indicators of water quality. Hydrobiologia 100(1):169–201CrossRefGoogle Scholar
  63. Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green-algae in lake phytoplankton. Science 221(4611):669–671CrossRefGoogle Scholar
  64. Soares MCS, Lurling M, Huszar VLM (2010) Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. J Plankton Res 32(7):999–1008CrossRefGoogle Scholar
  65. Sommer U, Adrian R, De Senerpont Domis L et al (2012) Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448CrossRefGoogle Scholar
  66. Striebel M, Singer G, Stibor H et al (2012) “Trophic overyielding’’: phytoplankton diversity promotes zooplankton productivity. Ecology 93(12):2719–2727CrossRefGoogle Scholar
  67. Strong WL (2016) Biased richness and evenness relationships within Shannon–Wiener index values. Ecol Indic 67:703–713CrossRefGoogle Scholar
  68. Tillmanns AR, Wilson AE, Pick FR et al (2008) Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses. Fundam Appl Limnol 171(4):285–295CrossRefGoogle Scholar
  69. Walz N, Elster HJ, Mezger M (1987) The development of the rotifer community structure in Lake Constance during its eutrophication. Arch fuer Hydrobiol Suppl 74(4):452–487Google Scholar
  70. Wang J (1961) Freshwater rotifer fauna in China. Science Press, BeijingGoogle Scholar
  71. Wang S, Xie P, Geng H (2010) The relative importance of physicochemical factors and crustacean zooplankton as determinants of rotifer density and species distribution in lakes adjacent to the Yangtze River, China. Limnol Ecol Manag Inland Waters 40(1):1–7CrossRefGoogle Scholar
  72. Wang R, Dearing JA, Langdon PG et al (2012a) Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492(7429):419–422CrossRefGoogle Scholar
  73. Wang Z, Zhang ZY, Zhang JQ et al (2012b) Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China: the effects on the water quality, macrozoobenthos and zooplankton. Chemosphere 89(10):1255–1261CrossRefGoogle Scholar
  74. Wang JF, Knops JMH, Brassil CE et al (2017) Increased productivity in wet years drives a decline in ecosystem stability with nitrogen additions in arid grasslands. Ecology 98(7):1779–1786CrossRefGoogle Scholar
  75. Wen XL, Xi YL, Qian FP et al (2011) Comparative analysis of rotifer community structure in five subtropical shallow lakes in East China: role of physical and chemical conditions. Hydrobiologia 661(1):303–316CrossRefGoogle Scholar
  76. Wichelen J, Declerck S, Muylaert K et al (2007) The importance of drawdown and sediment removal for the restoration of the eutrophied shallow Lake Kraenepoel (Belgium). Shallow Lakes Chang World 584:291–303CrossRefGoogle Scholar
  77. Williamson CE (1983) Invertebrate predation on planktonic rotifers. Hydrobiologia 104(1):385–396CrossRefGoogle Scholar
  78. Yoshida T, Urabe J, Elser JJ (2003) Assessment of ‘top-down’ and ‘bottom-up’ forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecol Res 18(6):639–650CrossRefGoogle Scholar
  79. Zhang Z, Huang X (1991) Research methods of freshwater plankton. Science Press, Beijing, pp 345–348 (in Chinese) Google Scholar
  80. Zhang J, Xie P, Tao M, Guo L, Chen J, Li L, Zhang X, Zhang L, Fontaneto D (2013) The impact of fish predation and cyanobacteria on zooplankton size structure in 96 subtropical lakes. PLoS ONE 8(10):15Google Scholar
  81. Zhang H, Ekvall MK, Xu J et al (2015) Counteracting effects of recruitment and predation shape establishment of rotifer communities under climate change. Limnol Oceanogr 60(5):1577–1587CrossRefGoogle Scholar
  82. Zhu X, Zhang Y (2009) Control of water pollution in Wuli Lake. Water Resour Prot 25(1):86–89Google Scholar

Copyright information

© The Japanese Society of Limnology 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations