Skip to main content
Log in

Effects of macrophyte leachate on Anabaena sp. and Chlamydomonas moewusii growth in freshwater tropical ecosystems

  • Rapid communication
  • Note on important and novel findings
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

This study reports on the effects of dissolved organic matter (DOM) derived from the aquatic macrophyte Pistia stratiotes (collected from a tropical reservoir) on the mixotrophic growth of two phytoplankton species (Chlamydomonas moewusii and Anabaena sp.). The DOM from P. stratiotes had a mainly aliphatic structure, low molecular weight, low cellulose and lignin content and high carbon content. The addition of DOM (5% v/v) significantly decreased the growth rate of Anabaena sp. but increased the chlorophyll a concentration of C. moewusii. Higher light intensity (100 versus 30 µmol m−2 s−1) was important for Anabaena sp., increasing its growth rate and chlorophyll content. The use of DOM from P. stratiotes to mitigate cyanobacterial blooms should be further explored in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • APHA—American Public Health Association (2005) Standard methods for examination of water and wastewater, 25th edn. APHA, Washington

    Google Scholar 

  • Beamud SG, Karrasch B, Pedrozo FL, Diaz MM (2014) Utilisation of organic compounds by osmotrophic algae in an acid lake in Patagonia (Argentina). Limnol 15:163–172

    Article  CAS  Google Scholar 

  • Bianchini I Jr, Silva RH, Cunha-Santino MB, Panhota RS (2010) Aerobic and anaerobic decomposition of Pistia stratiotes leachates from a tropical eutrophic reservoir (Barra Bonita, SP, Brazil). Braz J Biol 70(3):559–568

    Article  PubMed  Google Scholar 

  • Carvalho FT, Galo MLBT, Martins E (2003) Plantas aquáticas e nível de infestação das espécies presentes no reservatório de Barra Bonita, no rio Tietê. Planta Daninha 21:15–19

    Article  Google Scholar 

  • Cecchi P, Garrido M, Collos Y, Pasqualini V (2016) Water flux management and phytoplankton communities in a Mediterranean coastal lagoon. Part II: Mixotrophy of dinoflagellates as an adaptive strategy. Marine Poll Bull 108:120–133

    Article  CAS  Google Scholar 

  • Demarty M, Praire YT (2009) In situ dissolved organic carbon (DOC) released by submerged macrophyte-epiphyte communities in southern Quebec lakes. Can J Fish Aquatic Sci 66:1522–1531

    Article  CAS  Google Scholar 

  • Flynn KJ, Mitra A (2009) Building the "perfect-beast": modelling mixotrophic plankton. J Plankton Res 31(9):965–992

    Article  CAS  Google Scholar 

  • Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, Granéli E, Burkholder JM (2012) Misuse of the phytoplankton—zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional groups. J Plankton Res 35(1):3–11

    Article  Google Scholar 

  • Granelli E, Carlsson P, Legrand C (1999) The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquat Ecol 33:17–27

    Article  Google Scholar 

  • Griffiths MJ, Garcin C, Van Hille RP, Harrison STL (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Methods 85:119–123

    Article  CAS  PubMed  Google Scholar 

  • Guoce Y, Dingji S, Zhaoling C, Wei C, Fan O (2011) Growth and physiological features of Cyanobacterium anabaena sp. strain PCC 7120 in a glucose mixotrophic culture. Chin J Chem Eng 19(1):108–115

    Article  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53(3):955–969

    Article  Google Scholar 

  • Kamjunke N, Tittel J (2008) Utilisation of leucine by several phytoplankton species. Limnologica 38:360–366

    Article  Google Scholar 

  • Kamjunke N, Köhler B, Wannicke N, Tittel J (2008) Algae as competitor for glucose with heterotrophic bacteria. J Phycol 44:616–623

    Article  CAS  PubMed  Google Scholar 

  • Lee RE (2008) Phycology, 4th edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Møller J, Miller M, Kjøller A (1999) Fungal-bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality. Soil Biol Biochem 31(3):367–374

    Article  Google Scholar 

  • Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Archiv fuer Hydrobiologie. Beih Ergebn Limnol 14:14–36

    CAS  Google Scholar 

  • Qu X, Xie L, Lin Y, Bai Y, Zhu Y, Xie F, Giesy JP, Wu F (2013) Quantitative and qualitative characteristics of dissolved organic matter from eight dominant aquatic macrophytes in Lake Dianchi, China. Environ Sci Pollut Res 20:7413–7423

    Article  CAS  Google Scholar 

  • Reynolds CS (1988) Functional morphology and the adaptive strategies of freshwater phytoplankton. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, pp 388–433

  • Reynolds CS (2006) The ecology of phytoplankton: ecology, biodiversity, and conservation. Cambridge University Press, New York

    Book  Google Scholar 

  • Riemann B, Havskum H, Thingstad F, Bernard C (1995) The role of mixotrophy in pelagic environments. In: Joint I (Ed) Molecular ecology of aquatic microbes. Springer, Berlin, pp 87–105

  • Soares EM, Figueredo CC, Gücker B, Boëchat IG (2013) Effects of growth condition on succession patterns in tropical phytoplankton assemblages subjected to experimental eutrophication. J Palnkton Res 35(5):1141–1153

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry. Genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  • Taghavi N, Robinson G (2016) Improving the optimum yield and growth of Chlamydomonas reinhardtii CC125 and CW15 using various carbon sources and growth regimes. Afr J Biotech 15(23):1083–1100

    Google Scholar 

  • Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, Kamjunke N (2003) Mixotrophics combine resource use to outcompete specialists: implications for aquatic food webs. PNAS 100(22):12776–12781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehr JD, Holen DA, McDonald MM, Lonergan SP (1998) Effects of different carbon sources on a freshwater plankton community. Can J Fish Aquat Sci 55:2150–2160

    Article  Google Scholar 

  • Wetzel RG (1993) Limnologia. Editora Fundação Calouste Gulbenkian, Lisboa

    Google Scholar 

  • Wu X, Wu H, Ye J, Zhong B (2015) Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa. Environ Sci Pollut Res 22:18994–19001

    Article  CAS  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to the thank Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Process number 2012/21829-0) for the financial support and K. J. Murphy for the English review of this paper. Moreover, we would also like to thank three anonymous reviewers for their valuable comments for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia Bottino.

Additional information

Handling Editor: Elly Spijkerman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottino, F., Vargas, S.R., Miwa, A.C.P. et al. Effects of macrophyte leachate on Anabaena sp. and Chlamydomonas moewusii growth in freshwater tropical ecosystems. Limnology 19, 171–176 (2018). https://doi.org/10.1007/s10201-017-0532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-017-0532-0

Keywords

Navigation