Limnology

, Volume 14, Issue 3, pp 247–256

Estimation of carbon biomass and community structure of planktonic bacteria in Lake Biwa using respiratory quinone analysis

  • Hiroyuki Takasu
  • Tadao Kunihiro
  • Shin-ichi Nakano
Research paper

Abstract

The relationship between bacterial respiratory quinone (RQ) concentration and biomass was assessed for Lake Biwa bacterial assemblages to evaluate the utility of bacterial RQ concentration as an indicator of bacterial carbon. The biomass estimated from the RQ concentration correlated well with that from cell volume, indicating that RQ concentration is an appropriate indicator of bacterial biomass. The estimated carbon content per unit of RQ (carbon conversion factor) of bacteria was 0.67 mg C nmol RQ−1. Bacterial carbon biomass, which was estimated from the RQ concentration using the conversion factor, ranged between 0.008 and 0.054 mg C L−1 (average 0.025 mg C L−1) at 5 m depth and between 0.010 and 0.024 mg C L−1 (average 0.015 mg C L−1) at 70 m depth. Ubiquinone-8-containing bacteria dominated the epilimnion and hypolimnion. Compared to conventional image analysis, bacterial RQ analysis is a less laborious method of simultaneously determining bacterial biomass and community.

Keywords

Bacterial biomass Bacterial community structure Respiratory quinone Lake Biwa 

References

  1. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev 5:782–791. doi:10.1038/nrmicro1747 CrossRefGoogle Scholar
  2. Bjørsen PK (1986) Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol 51:1199–1204Google Scholar
  3. Blackburn N, Hagström Å, Wikner J, Cuadros-Hansson R, Bjørsen PK (1998) Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl Environ Microbiol 64:3246–3255PubMedGoogle Scholar
  4. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedGoogle Scholar
  5. Ducklow HW (2000) Bacterial production and biomass in the oceans. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, pp 85–120Google Scholar
  6. Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagstrom A (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483PubMedGoogle Scholar
  7. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726PubMedGoogle Scholar
  8. Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66:5053–5065. doi:10.1128/AEM.66.11.5053-5065.2000 PubMedCrossRefGoogle Scholar
  9. Hamada K, Miura A, Fujita M, Hitomi T, Kubota T, Shiratani E (2010) Evaluation of the characteristics of microorganisms that contribute to denitrification in the paddy drainage treatment apparatus by quinone composition measurement. J Water Environ Technol 8:421–427. doi:10.2965/jwet.2010.421 CrossRefGoogle Scholar
  10. Hedrick DB, White DC (1986) Microbial respiratory quinones in the environment. J Microbiol Meth 5:243–254. doi:10.1016/0167-7012(86)90049-7 CrossRefGoogle Scholar
  11. Hiraishi A (1999) Isoprenoid quinones as biomarkers of microbial populations in the environment. J Biosci Bioeng 88:449–460. doi:10.1016/S1389-1723(00)87658-6 PubMedCrossRefGoogle Scholar
  12. Hiraishi A, Kato K (1999) Quinone profiles in lake sediments: implications for microbial diversity and community structures. J Gen Appl Microbiol 45:221–227. doi:10.2323/jgam.45.221 PubMedCrossRefGoogle Scholar
  13. Hiraishi A, Morishima Y, Takeuchi J (1991) Numerical analysis of lipoquinone patterns in monitoring bacterial community dynamics in wastewater treatment systems. J Gen Appl Microbiol 37:57–70CrossRefGoogle Scholar
  14. Hiraishi A, Iwasaki M, Kawagishi T, Yoshida N, Narihiro T, Kato K (2003) Significance of lipoquinones as quantitative biomarkers of bacterial populations in the environment. Microbes Environ 18:89–93. doi:10.1264/jsme2.18.89 CrossRefGoogle Scholar
  15. Hu H-Y, Lim B-R, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Meth 47:17–24. doi:10.1016/S0167-7012(01)00286-X CrossRefGoogle Scholar
  16. Kaiser K, Benner R (2008) Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr 53:99–112. doi:10.4319/lo.2008.53.1.0099 CrossRefGoogle Scholar
  17. Kawasaki N, Benner R (2006) Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol Oceanogr 51:2170–2180. doi:10.4319/lo.2006.51.5.2170 CrossRefGoogle Scholar
  18. Kawasaki N, Fukuda R, Ogawa H, Nagata T, Benner R (2011) Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean. Aquat Microb Ecol 62:165–176. doi:10.3354/ame01462 CrossRefGoogle Scholar
  19. Kim C, Nishimura Y, Nagata T (2006) Role of dissolved organic matter in hypolimnetic mineralization of carbon and nitrogen in a large, monomictic lake. Limnol Oceanogr 51:70–78. doi:10.4319/lo.2006.51.1.0070 CrossRefGoogle Scholar
  20. Kirchman DL, Ditel AI, Findlay SEG, Fischer D (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35:243–257. doi:10.3354/ame035243 CrossRefGoogle Scholar
  21. Koike I, Hara S, Terauchi K, Kogure K (1990) Role of sub-micrometer particles in the ocean. Nature 345:242–244. doi:10.1038/345242a0 CrossRefGoogle Scholar
  22. Kroer N (1994) Relationships between biovolume and carbon and nitrogen content of bacterioplankton. FEMS Microb Ecol 13:217–224CrossRefGoogle Scholar
  23. Kunihiro T, Miyazaki T, Uramoto Y, Kinoshita K, Inoue A, Tamaki S, Hama D, Tsutsumi H, Ohwada K (2008) The succession of microbial community in the organic rich fish-farm sediment during bioremediation by introducing artificially mass-cultured colonies of a small polychaete, Capitella sp. I. Mar Pollut Bull 57:68–77. doi:10.1016/j.marpolbul.2007.10.009 PubMedCrossRefGoogle Scholar
  24. Kunihiro T, Takasu H, Miyazaki T, Uramoto Y, Kinoshita K, Yodnarasri S, Hama D, Wada M, Kogure K, Ohwada K, Tsutsumi H (2011) Increase in Alphaproteobacteria in association with a polychaete, Capitella sp. I, in the organically enriched sediment. ISME J 5:1818–1831. doi:10.1038/ismej.2011.57 PubMedCrossRefGoogle Scholar
  25. Langenheder S, Lindström ES, Tranvik LJ (2005) Weak coupling between community composition and functioning of aquatic bacteria. Limnol Oceanogr 50:957–967. doi:10.4319/lo.2005.50.3.0957 CrossRefGoogle Scholar
  26. Langenheder S, Lindström ES, Tranvik LJ (2006) Structure and function of bacterial communities emerging from different sources under identical conditions. Appl Environ Microbiol 72:212–220PubMedCrossRefGoogle Scholar
  27. Li Y (2010) Microbial respiratory quinones as indicator of ecophysiological redox conditions. Front Earth Sci China 4:195–204. doi:10.1007/s11707-010-0019-3 CrossRefGoogle Scholar
  28. Lim B-R, Ahn K-H, Songprasert P, Lee S-H, Kim M-J (2004) Microbial community structure in an intermittently aerated submerged membrane bioreactor treating domestic wastewater. Desalination 161:145–153. doi:10.1016/S0011-9164(04)90050-1 CrossRefGoogle Scholar
  29. Loferer-Krößbacher M, Klima J, Psenner R (1998) Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol 64:688–694Google Scholar
  30. Mito S, Kawashima M, Sohrin Y (2002) Characterization of suspended solids in Lake Biwa by measuring their elemental composition of Al, Si, P, S, K, Ca, Ti, Mn, and Fe. Limnology 3:11–19. doi:10.1007/s102010200001 CrossRefGoogle Scholar
  31. Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol 65:478–479PubMedCrossRefGoogle Scholar
  32. Nagata T (1986) Carbon and nitrogen content of natural planktonic bacteria. Appl Environ Microbiol 52:28–32PubMedGoogle Scholar
  33. Nagata T, Watanabe Y (1990) Carbon- and nitrogen-to-volume ratios of bacterioplankton grown under different nutritional conditions. Appl Environ Microbiol 56:1303–1309PubMedGoogle Scholar
  34. Nakano S, Kawabata Z (2000) Changes in cell volume of bacteria and heterotrophic nanoflagellates in a hypereutrophic pond. Hydrobiologia 428:197–203. doi:10.1023/A:1003971516725 CrossRefGoogle Scholar
  35. Nishimura Y, Kim C, Nagata T (2005) Vertical and seasonal variations of bacterioplankton subgroups with different nucleic acid contents: possible regulation by phosphorus. Appl Microbiol 71:5828–5836. doi:10.1128/AEM.71(10),5828-5836.2005 CrossRefGoogle Scholar
  36. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948. doi:10.4319/lo.1980.25.5.0943 CrossRefGoogle Scholar
  37. Posch T, Loferer-Krößbacher M, Gao G, Alfreider A, Pernthaler J, Psenner R (2001) Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquat Microb Ecol 25:55–63. doi:10.3354/ame025055 CrossRefGoogle Scholar
  38. Posch T, Franzoi J, Prader M, Salcher MM (2009) New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquat Microb Ecol 54:113–126. doi:10.3354/ame01269 CrossRefGoogle Scholar
  39. Saitou K, Nagasaki K, Yamakawa H, Hu H-Y, Fujie K (1999) Linear relation between the amount of respiratory quinones and the microbial biomass in soil. Soil Sci Plant Nutr 45:775–778. doi:10.1080/00380768.1999.10415843 CrossRefGoogle Scholar
  40. Sinha B, Annachhatre AP (2007) Assessment of partial nitrification reactor performance through microbial population shift using quinone profile, FISH and SEM. Bioresour Technol 98:3602–3610. doi:10.1016/j.biortech.2006.11.034 PubMedCrossRefGoogle Scholar
  41. Straza TRA, Cottrell MT, Ducklow HW, Kirchman DL (2009) Geographic and phylogenetic variation in bacterial biovolume as revealed by protein and nucleic acid staining. Appl Environ Microbiol 75:4028–4034. doi:10.1128/AEM.00183-09 PubMedCrossRefGoogle Scholar
  42. Takasu H, Kunihiro T, Nakano S (2012) Vertical community structure of bacteria and phytoplankton in Lake Biwa using respiratory quinone and pigment analysis. In: Kawaguchi M, Misaki K, Sato H, Yokokawa T, Itai T, Nguyen TM, Ono J, Tanabe S (eds) Interdisciplinary studies on environmental chemistry—environmental pollution and ecotoxicology, vol 6. Terrapub, Tokyo, pp 377–385Google Scholar
  43. Villanueva L, Navarrete A, Urmeneta J, Geyer R, White DC, Guerrero R (2007) Monitoring diel variations of physiological status and bacterial diversity in an estuarine microbial mat: an integrated biomarker analysis. Microbiol Ecol 54:523–531. doi:10.1007/s00248-007-9224-3 CrossRefGoogle Scholar
  44. Yokokawa T, Nagata T (2005) Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl Environ Microbiol 71:6799–6807. doi:10.1128/AEM.71.11.6799-6807.2005 PubMedCrossRefGoogle Scholar
  45. Yokokawa T, Nagata T (2010) Linking bacterial community structure to carbon fluxes in marine environments. J Oceanogr 66:1–12. doi:10.1007/s10872-010-0001-4 CrossRefGoogle Scholar
  46. Yokokawa T, Nagata T, Cottrell MT, Kirchman DL (2004) Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol Oceanogr 49:1620–1629. doi:10.4319/lo.2004.49.5.1620 CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Limnology 2013

Authors and Affiliations

  • Hiroyuki Takasu
    • 1
  • Tadao Kunihiro
    • 2
    • 3
  • Shin-ichi Nakano
    • 1
  1. 1.Center for Ecological Research (CER)Kyoto UniversityOtsuJapan
  2. 2.Center for Marine Environmental Studies (CMES)Ehime UniversityMatsuyamaJapan
  3. 3.Department of Ecosystems StudiesRoyal Netherlands Institute of Sea Research (NIOZ)YersekeThe Netherlands

Personalised recommendations