Advertisement

Limnology

, Volume 12, Issue 3, pp 225–233 | Cite as

A photographic method for detailing the morphology of the floor of a dynamic crater lake: the El Chichón case (Chiapas, Mexico)

  • Dmitri Rouwet
Research paper

Abstract

The active volcano El Chichón (Chiapas, Mexico) hosts a shallow acidic crater lake. During the period 2001–2007, 26 photographs of the crater lake were taken from the same spot at the eastern crater rim, ~160 m above the crater floor. The size of the lake was extremely variable. Using a GPS track from around the lake shore as a reference, 26 digitized lake outlines were corrected simultaneously for the perspective angle. The corrected lake outlines were superposed, leading to a “morphological map” of a large section of the lake bottom. This map provides insight into the erosive–sedimentary regime of the lake floor. The inner section of the lake is more stable due to the precipitation of sealing clays. This is probably one of the reasons why the El Chichón crater lake has never disappeared during the past 28 years. The sealing clays at the lake bottom can be considered the superficial analog of impermeable clay caps at the depths of hydrothermal systems. The photographic procedure presented here may be useful for other limnological and (volcanic) lake studies aimed at describing lake morphology, and for eventually deducing the surface area and volume of the lake.

Keywords

El Chichón volcano Crater lake Photographic method Geomorphology 

Notes

Acknowledgments

The author wishes to thank the reviewers and the editor for insightful revision of the manuscript. The author is indebted to K. Freeland, Y. Taran, T. Scolamacchia, J.C. Mora, M. Jutzeler, N. Varley, A. Mazot and L. Serrano for additional photographs, and is grateful to Y. Taran, M. Jutzeler, P. Madonia, J.C. Varekamp, and G. Chiodini for nourishing comments on the early version of this manuscript. Financial support for D.R. during the period 2006–2007 came from Belgische Stichting Roeping.

References

  1. Aiuppa A, D’Alessandro W, Gurrieri S, Madonia P, Parello F (2007) Hydrologic and geochemical survey of the lake “Specchio di Venere” (Pantelleria Island, Southern Italy). Environ Geol 53:903–913CrossRefGoogle Scholar
  2. Anzidei M, Carapezza ML, Esposito A, Giordano G, Tarchini L, Lelli M (2008) The Albano Maar lake high resolution bathymetry and dissolved CO2 budget (Colli Albani District, Italy): constraints to hazard evaluation. J Volcanol Geotherm Res 171:258–268CrossRefGoogle Scholar
  3. Bernard A, Escobar CD, Mazot A, Gutiérrez RE (2004) The acid volcanic lake of Santa Ana volcano, El Salvador. Geol Soc Am 375:121–133Google Scholar
  4. Brantley SL, Borgia A, Rowe G, Fernández JF, Reynolds JF (1987) Poás volcano crater lake acts as a condenser for acid metal-rich brine. Nature 330:470–472CrossRefGoogle Scholar
  5. Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poás crater lake: implications for predicting volcanic activity. Nature 339:370–373CrossRefGoogle Scholar
  6. Casadevall TJ, De la Cruz-Reyna S, Rose WI, Bagley S, Finnegan DL, Zoller WH (1984) Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico. J Volcanol Geotherm Res 23:169–191CrossRefGoogle Scholar
  7. Caudron C, Bernard A (2010) Hydroacoustic quantifications of CO2 bubbles in volcanic lakes (abstract). In: 7th Workshop on Volcanic Lakes, CVL-IAVCEI, Costa Rica, 10–21 March 2010Google Scholar
  8. Christenson BW (1994) Convection and stratification in Ruapehu crater lake, New Zealand: implications for Lake Nyos-type gas release eruptions. Geochem J 26:185–197CrossRefGoogle Scholar
  9. Christenson BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal system. J Volcanol Geotherm Res 97:1–30CrossRefGoogle Scholar
  10. Christenson BW, Mazot A, Britten K (2010) Gas transfer through Ruapehu crater lake: insights gained from a recent water-borne survey. AGU Fall Meeting, San Francisco, CA, USA, 13–17 December 2010, V23A-2388Google Scholar
  11. Delmelle P, Bernard A (2000) Volcanic lakes. In: Encyclopedia of volcanoes. Academic, New York, pp 877–895Google Scholar
  12. Galindo I, Roeder G, López JP (2008) Long term AVHRR observations of surface radiative flux from El Chichón crater lake (1996–2006). J Volcanol Geotherm Res 174:488–493CrossRefGoogle Scholar
  13. Giggenbach WF (1974) The chemistry of crater lake, Mt. Ruapehu (New Zealand) during and after the 1971 active period. NZ J Sci 17:33–45Google Scholar
  14. Haberyan KA, Horn SP, Umaña GV (2003) Basic limnology of fifty-one lakes in Costa Rica. Rev Biol Trop 51:107–122PubMedGoogle Scholar
  15. Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527Google Scholar
  16. Hedenquist JW, Reyes AG, Simmons SF, Taguchi S (1992) The thermal and geochemical structure of geothermal and epithermal systems: a framework for interpreting fluid inclusion data. Euro J Mineral 4:989–1015Google Scholar
  17. Hurst AW, Bibby HM, Scott BJ, McGuinness MJ (1991) The heat source of Ruapehu crater lake; deductions from the energy and mass balances. J Volcanol Geotherm Res 46:1–20CrossRefGoogle Scholar
  18. Inbar M, Reyes Enriquez A, Graniel Graniel JH (2001) Morphological changes and erosion processes following the 1982 eruption of El Chichón volcano, Chiapas, Mexico. Géomorphol Relief Process Environ 3:175–184CrossRefGoogle Scholar
  19. Jekeli C, Dumrongchai P (2003) On monitoring a vertical datum with satellite altimetry and water-level gauge data on large lakes. J Geodesy 77:447–453CrossRefGoogle Scholar
  20. Jutzeler M, Varley N (2008) Geophysical study of the El Chichón dome complex (Chiapas, Mexico): insights into its structure and alteration processes. In: IAVCEI General Assembly, Reykjavík, Iceland, 18–22 Aug 2008, 2-f P08Google Scholar
  21. Jutzeler M, Varley N, Roach M (2011) Geophysical characterization of hydrothermal systems and intrusive bodies, El Chichón volcano (Mexico). J Geophys Res (in press)Google Scholar
  22. Madonia P, Naselli-Flores L, Parello F, Parlatos B, Viola A (2006) Geological development of a gypsum lake formed at the beginning of the 20th century in central Sicily, Italy: integration of historical data with modern survey techniques. Chem Ecol 22:333–347CrossRefGoogle Scholar
  23. Martini M, Giannini L, Prati F, Tassi F, Capaccioni B, Bozzelli P (1994) Chemical characters of crater lakes in the Azores and Italy: the anomaly of Lake Albano. Geochem J 26:173–184CrossRefGoogle Scholar
  24. Mazot A (2005) Activité hydrothermale des volcans Kelud et Papandayan (Indonésie) et évaluation des flux de gaz carbonique (Ph.D. thesis). Université Libre de Bruxelles, BelgiumGoogle Scholar
  25. Mazot A, Solikhin A (2008) Evolution du flux de gaz carbonique du lac de cratère du KELUD de 2001 jusqu’à l’éruption de 2007. Liaison Amateurs Volcanol Eur 130:24–31 Google Scholar
  26. Mills HH (1992) Post-eruption erosion and deposition in the 1980 crater of Mount St Helens, Washington, determined from digital maps. Earth Surf Process Landforms 17:739–754CrossRefGoogle Scholar
  27. Miyabuchi Y, Terada A (2009) Subaqueous geothermal activity revealed by lacustrine sediments of the acidic Nakadake crater lake, Aso Volcano, Japan. J Volcanol Geotherm Res 187:140–145. doi: 10.1016/j.jvolgeores.2009.08.001 CrossRefGoogle Scholar
  28. Mora R (2005) Informe de la actividad de la Cordillera Volcánica Central, Enero 2003–Junio 2004 (internal report). RSN, Costa Rica, pp 1–56Google Scholar
  29. Morris CS, Gill SK (1994) Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes. J Geophys Res 99:24527–24539CrossRefGoogle Scholar
  30. Obanawa H, Matsukura Y (2008) Cliff retreat and talus development at the caldera wall of Mount Saint Helens: computer simulation using a mathematical model. Geomorphology 97:697–711CrossRefGoogle Scholar
  31. Ohba T, Hirabayashi J, Nogami K (1994) Water, heat and chlorine budgets of the crater lake, Yugama at Kusatsu-Shirane volcano, Japan. Geochem J 26:217–231CrossRefGoogle Scholar
  32. Ohba T, Hirabayashi J, Nogami K (2000) D/H and 18O/16O ratios of water in the crater lake at Kusatsu-Shirane volcano, Japan. J Volcanol Geotherm Res 97:329–346CrossRefGoogle Scholar
  33. Ohsawa S, Saito T, Yoshikawa S, Mawatari H, Yamada M, Amita K, Takamatsi N, Sudo Y, Kagiyama T (2010) Color change of lake water at the active crater lake of Aso volcano, Yudamari, Japan: is it in response to change in water quality induced by volcanic activity? Limnology. doi: 10.1007/s10201-009-0304-6
  34. Oppenheimer C (1997) Ramifications of the skin effect for crater lake heat budget analysis. J Volcanol Geotherm Res 75:159–165CrossRefGoogle Scholar
  35. Rouwet D, Taran Y, Varley N (2004) Dynamics and mass balance of El Chichón crater lake, Mexico. Geofís Int 43:427–434Google Scholar
  36. Rouwet D, Taran Y, Inguaggiato S, Varley N, Santiago SJA (2008) Hydrochemical dynamics of the “lake-spring” system in the crater of El Chichón volcano (Chiapas, Mexico). J Volcanol Geotherm Res 178:237–248CrossRefGoogle Scholar
  37. Rouwet D, Bellomo S, Brusca L, Inguaggiato S, Jutzeler M, Mora R, Mazot A, Bernard R, Cassidy M, Taran Y (2009) Major and trace element geochemistry of El Chichón volcano-hydrothermal system (Chiapas, Mexico) in 2006–2007: implications for future geochemical monitoring. Geofís Int 48:55–72Google Scholar
  38. Takano B (1987) Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake. Science 235:1633–1635PubMedCrossRefGoogle Scholar
  39. Takano B, Suzuki K, Sugimori K, Ohba T, Fazlullin SM, Bernard A, Sumarti S, Sukhyar R, Hirabayashi M (2004) Bathymetric and geochemical investigation of Kawah Ijen crater lake, East Java, Indonesia. J Volcanol Geotherm Res 135:299–329CrossRefGoogle Scholar
  40. Taran Y, Rouwet D (2007) Energy-budget and mass balance estimations of the thermal input to El Chichón crater lake, Mexico. Water–Rock Interact 12:947–951Google Scholar
  41. Taran Y, Rouwet D (2008) Estimating thermal inflow to El Chichón crater lake using the chemical and isotope balance approach. J Volcanol Geotherm Res 175:472–481CrossRefGoogle Scholar
  42. Taran Y, Varley N (1999) New data about El Chichón crater lake. IAVCEI General Assembly, JakartaGoogle Scholar
  43. Taran YA, Fischer TP, Pokrovsky B, Sano Y, Armienta MA, Macías JL (1998) Geochemistry of the volcano-hydrothermal system of El Chichón Volcano, Chiapas, Mexico. Bull Volcanol 60:436–449CrossRefGoogle Scholar
  44. Tassi F, Vaselli O, Fernández E, Duarte E, Martínez M, Delgado-Huertas A, Bergamaschi F (2009) Morphological and geochemical features of crater lakes in Costa Rica: an overview. J Limnol 68:193–205Google Scholar
  45. Trunk L, Bernard A (2008) Investigating crater lake warming using ASTER thermal imagery: case studies at Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes. J Volcanol Geotherm Res 178:259–270Google Scholar
  46. Varekamp JC (2003) Lake contamination models for evolution towards steady state. J Limnol 62:67–72Google Scholar
  47. Varekamp JC, Pasternack GB, Rowe GL (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97:161–179CrossRefGoogle Scholar
  48. Zlotnicki J, Sasai Y, Toutain JP, Villacorte EU, Bernard A, Sabit JP, Gordon JM Jr, Corpuz EG, Harada M, Punongbayan JT, Hase H, Nagao T (2008) Combined electromagnetic, geochemical and thermal surveys of Taal volcano (Philippines) during the period 2005–2006. Bull Volcanol 71:29–47CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Limnology 2011

Authors and Affiliations

  1. 1.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di PalermoPalermoItaly

Personalised recommendations