The European Journal of Health Economics

, Volume 20, Issue 7, pp 1029–1039 | Cite as

Changing payment instruments and the utilisation of new medical technologies

  • Patricia ExEmail author
  • Cornelia Henschke
Original Paper


This paper empirically investigates the impact of additional reimbursement instruments on the diffusion of new technologies in inpatient care. Using 2010–2014 German panel data on hospital level for every patient undergoing coronary angioplasty, this study examines the utilisation of drug-eluting balloon catheters (DEB) over time while additional payment instruments changed. Hypothesising that the utilisation of DEB increased abruptly when a new reimbursement instrument came into force, we estimate a fixed effects regression comparing years with a change and years where the reimbursement instrument remained the same. The model is adjusted for patient age and severity of the disease. The utilisation of DEB increased from 8407 in 2010 to 19,065 in 2014. Hospitals used significantly more DEB when an additional payment instrument changed compared to years when it remained the same. The increase was roughly twice as large. In short, hospitals are incentivised to utilise new technologies if the reimbursement changes to an instrument that is designed in a more reliable way, e.g. including less bureaucracy or guaranteeing fixed prices.


Additional payment instruments Diffusion of innovations New health technology Hospital financing DRG system Panel data 

JEL Classification

I12 I18 C32 C33 



The project was funded through the Berlin Centre for Health Economics Research by the German Federal Ministry of Education and Research (Grant No. 01EH1604A). Patricia Ex received a scholarship from Cusanuswerk, the episcopal scholarship foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Barnum, H., Kutzin, J., Saxenian, H.: Incentives and provider payment methods. Int J. Health Plann. Manag. 10(1), 23–45 (1995)CrossRefGoogle Scholar
  2. 2.
    McCullough, J.S.: The adoption of hospital information systems. Health Econ. 17(5), 649–664 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    Pirson, M., Schenker, L., Martins, D., Dung, D., Chalé, J.J., Lecrercq, P.: What can we learn from international comparisons of costs by DRG? Eur. J. Health Econ. 14(1), 67–73 (2013)CrossRefPubMedGoogle Scholar
  4. 4.
    Hernandez, J., Machacz, S.F., Robinson, J.C.: US hospital payment adjustments for innovative technology lag behind those in Germany, France, and Japan. Health Aff. (Millwood) 34(2), 261–270 (2015)CrossRefGoogle Scholar
  5. 5.
    Kesteloot, K., Voet, N.: Incentives for cooperation in quality improvement among hospitals? The impact of the reimbursement system. J. Health Econ. 17(6), 701–728 (1998)CrossRefPubMedGoogle Scholar
  6. 6.
    Lee, R.H., Waldman, D.M.: The diffusion of innovations in hospitals. Some econometric considerations. J. Health Econ. 4(4), 373–380 (1985)CrossRefPubMedGoogle Scholar
  7. 7.
    Scheller-Kreinsen, D., Quentin, W., Busse, R.: DRG-based hospital payment systems and technological innovation in 12 European countries. Value Health 14(8), 1166–1172 (2011)CrossRefPubMedGoogle Scholar
  8. 8.
    Bech, M., Christiansen, T., Dunham, K., Lauridsen, J., Lyttkens, C.H., McDonald, K., McGuire, A.: The influence of economic incentives and regulatory factors on the adoption of treatment technologies: a case study of technologies used to treat heart attacks. Health Econ. 18(10), 1114–1132 (2009)CrossRefPubMedGoogle Scholar
  9. 9.
    Cappellaro, G., Ghislandi, S., Anessi-Pessina, E.: Diffusion of medical technology: the role of financing. Health Policy 100(1), 51–59 (2011)CrossRefPubMedGoogle Scholar
  10. 10.
    Cutler, D.M., Huckman, R.S.: Technological development and medical productivity: the diffusion of angioplasty in New York State. J. Health Econ. 22(2), 187–217 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    Romeo, A.A., Wagner, J.L., Lee, R.H.: Prospective reimbursement and the diffusion of new technologies in hospitals. J. Health Econ. 3(1), 1–24 (1984)CrossRefPubMedGoogle Scholar
  12. 12.
    Sloan, F.A., Valvona, J., Perrin, J.M., Adamache, K.W.: Diffusion of surgical technology. An exploratory study. J. Health Econ. 5(1), 31–61 (1986)CrossRefPubMedGoogle Scholar
  13. 13.
    Cots, F., Chiarello, P., Salvador, X., Castells, X., Quentin, W.: DRG-based hospital payment: intended and unintended consequences. In: Busse, R., Geissler, A., Quentin, W., Wiley, M. (eds.) Diagnosis-related groups in Europe. Moving towards transparency, efficiency and quality in hospitals, pp. 75–92. Open University Press, Maidenhead (2011)Google Scholar
  14. 14.
    Farrar, S., Yi, D., Sutton, M., Chalkley, M., Sussex, J., Scott, A.: Has payment by results affected the way that English hospitals provide care? Difference-in-differences analysis. BMJ 339(7720), 554–556 (2009)Google Scholar
  15. 15.
    Bäumler, M.: Which non-clinical factors influence the use of innovative implants? The example of drug-releasing coronary stents in patients with acute myocardial infarction: a multilevel regression analysis. Das Gesundheitswesen 75(12), 822–831 (2013)CrossRefPubMedGoogle Scholar
  16. 16.
    Sorenson, C., Drummond, M., Wilkinson, G.: Use of innovation payments to encourage the adoption of new medical technologies in the English NHS. Health Policy Technol. 2(3), 168–173 (2013)CrossRefGoogle Scholar
  17. 17.
    Busse, R., Ganten, D., Huster, S., Reinhardt. ER,, Suttorp, N., Wiesing, U.: Zum Verhältnis von Medizin und Ökonomie im deutschen Gesundheitssystem: 8 Thesen zur Weiterentwicklung zum Wohle der Patienten und der Gesellschaft. Deutsche Akademie der Naturforscher Leopoldina e.V. (2016). Accessed 08 June 2018
  18. 18.
    Weiner, S.L., Maxwell, J.H., Sapolsky, H.M., Dunn, D.L., Hsiao, W.C.: Economic incentives and organizational realities: managing hospitals under DRGs. Milbank Q. 65(4), 463–487 (1987)CrossRefPubMedGoogle Scholar
  19. 19.
    Laffont, J.J., Martimort, D.: The theory of incentives: the principal-agent model. Princeton University Press, Princeton (2002)Google Scholar
  20. 20.
    Hall, B.H., Khan, B.: Adoption of New Technology. NBER Working Paper No. 9730. (2003). Accessed 08 June 2018
  21. 21.
    Smith, A.: The wealth of nations. The Modern Library, New York (1776)Google Scholar
  22. 22.
    Barnard, C.I., Andrews, K.R.: The functions of the executive. Harvard University Press, Cambridge (1938)Google Scholar
  23. 23.
    Baker, L.: Managed care and technology adoption in health care: evidence from magnetic resonance imaging. J. Health Econ. 20(3), 395–421 (2000)CrossRefGoogle Scholar
  24. 24.
    Clyde, A.T., Bockstedt, L., Farkas, J.A., Jackson, C.: Experience with Medicare’s new technology add-on payment program. Health Aff. (Millwood) 27(6), 1632–1641 (2008)CrossRefGoogle Scholar
  25. 25.
    Sorenson, C., Drummond, M., Torbica, A., Callea, G., Mateus, C.: The role of hospital payments in the adoption of new medical technologies: an international survey of current practice. Health Econ. Policy Law 10(2), 133–159 (2015)CrossRefPubMedGoogle Scholar
  26. 26.
    Schreyögg, J., Stargardt, T., Tiemann, O., Busse, R.: Methods to determine reimbursement rates for diagnosis related groups (DRG): a comparison of nine European countries. Health Care Manag. Sci. 9(3), 215–223 (2006)CrossRefPubMedGoogle Scholar
  27. 27.
    Ex, P., Vogt, V., Busse, R., Henschke, C.: The Reimbursement of New Medical Technologies in the German inpatient sector: what factors explain which hospitals receive innovation payments? HealthEcon, Pol, Law (2019)Google Scholar
  28. 28.
    Henschke, C., Bäumler, M., Weid, S., Gaskins, M., Busse, R.: Extrabudgetary (‘NUB’) payments: a gateway for introducing new medical devices into the German inpatient reimbursement system? J. Manag. Marketing Healthc 3(2), 119–133 (2010)CrossRefGoogle Scholar
  29. 29.
    Gruntzig, A.: Transluminal dilatation of coronary–artery stenosis. Lancet 1(8058), 263 (1978)CrossRefPubMedGoogle Scholar
  30. 30.
    Mark, D.B., Nelson, C.L., Califf, R.M., Harrell, F.E., Lee, K.L., Jones, R.H., Fortin, D.F., Stack, R.S., Glower, D.D., Smith, L.R., et al.: Continuing evolution of therapy for coronary artery disease. Initial results from the era of coronary angioplasty. Circulation 89(5), 2015–2025 (1994)CrossRefPubMedGoogle Scholar
  31. 31.
    Byrne, R.A., Joner, M., Alfonso, F., Kastrati, A.: Drug-coated balloon therapy in coronary and peripheral artery disease. Nat Rev Cardiol 11(1), 13–23 (2014)CrossRefPubMedGoogle Scholar
  32. 32.
    GBD 2013 Mortality and Causes of Death Collaborators: Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963), 117–171 (2015)CrossRefGoogle Scholar
  33. 33.
    OECD: Focus on Health Spending. Expenditure by disease, age and gender. (2016). Accessed 08 June 2018
  34. 34.
    Wooldridge, J.M.: Introductory Econometrics: A modern approach, 5th edn. South-Western Cengage Learning, Mason (2013)Google Scholar
  35. 35.
    Mitchell, M.N.: Interpreting and visualizing regression models using Stata. Stata Press, College Station (2012)Google Scholar
  36. 36.
    Afshartous, D., Preston, R.: Key results of interaction models with centering. J. Stat. Educ. 19(3), 1–24 (2011)CrossRefGoogle Scholar
  37. 37.
    Robinson, C., Randall, S.: Interaction effect. Centering, variance inflation factor, and interpretation issues. Mult Linear Regres Viewp 35(1), 6–11 (2009)Google Scholar
  38. 38.
    Rabe-Hesketh, S., Skrondal, A.: Multilevel and longitudinal modeling using stata, 3rd edn. Stata Press, College Station (2012)Google Scholar
  39. 39.
    Adler-Milstein, J., Everson, J., Lee, S.Y.: EHR adoption and hospital performance: time-related effects. Health Serv. Res. 50(6), 1751–1771 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mabotuwana, T., Hall, C.S., Flacke, S., Thomas, S., Wald, C.: Inpatient complexity in radiology—a practical application of the case mix index metric. J. Digit. Imaging 30(3), 301–308 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cameron, A.C., Trivedi, P.K.: Microeconometrics using Stata, revised. Stata Press, College Station (2010)Google Scholar
  42. 42.
    Giesselmann, M., Windzio, M.: Regressionsmodelle zur Analyse von Paneldaten. VS Verlag für Sozialwissenschaften, Wiesbaden (2012)CrossRefGoogle Scholar
  43. 43.
    Wooldridge, J.M.: Testing heteroskedasticity and autocorrelation in a fixed effects panel regression. (2011). Accessed 08 June 2018
  44. 44.
    Gould, W.: R-squared in panel data models. (2003). Accessed 08 June 2018
  45. 45.
    Torres-Reyna, O.: Panel Data Analysis. Fixed and Random Effects using Stata (2007). Accessed 08 June 2018
  46. 46.
    Knol, M.J., Pestman, W.R., Grobbee, D.E.: The (mis)use of overlap of confidence intervals to assess effect modification. Eur. J. Epidemiol. 26(4), 253–254 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jönsson, B.: Disruptive innovation and EU health policy. Eur. J. Health Econ. 18(3), 269–272 (2017)CrossRefPubMedGoogle Scholar
  48. 48.
    Brüderl, J.: Applied Panel Data Analysis. Using Stata. (2015). Accessed 08 June 2018
  49. 49.
    Lamiraud, K., Lhuillery, S.: Endogenous technology adoption and medical costs. Health Econ. 25(9), 1123–1147 (2016)CrossRefPubMedGoogle Scholar
  50. 50.
    Wijns, W.: ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010)CrossRefPubMedGoogle Scholar
  51. 51.
    Windecker, S.: ESC/EACTS Guidelines on myocardinal revascularization. Eur. Heart J. 25, 2541–2619 (2014)Google Scholar
  52. 52.
    Henschke, C., Bäumler, M., Weid, S., Busse, R.: Extrabudgetary (‘NUB’) payments: a gateway for introducing new medical devices into the German inpatient reimbursement system? J. Manag. Marketing Healthc. 3(2), 119–133 (2010)CrossRefGoogle Scholar
  53. 53.
    Dafny, L.S.: How do hospitals respond to price changes? Am. Econ. Rev. 95(5), 1525–1547 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Health Care ManagementTechnische Universität BerlinBerlinGermany

Personalised recommendations