The European Journal of Health Economics

, Volume 19, Issue 6, pp 843–860 | Cite as

Predicting medical practices using various risk attitude measures

  • Sophie Massin
  • Antoine Nebout
  • Bruno Ventelou
Original Paper


This paper investigates the predictive power of several risk attitude measures on a series of medical practices. We elicit risk preferences on a sample of 1500 French general practitioners (GPs) using two different classes of tools: scales, which measure GPs’ own perception of their willingness to take risks between 0 and 10; and lotteries, which require GPs to choose between a safe and a risky option in a series of hypothetical situations. In addition to a daily life risk scale that measures a general risk attitude, risk taking is measured in different domains for each tool: financial matters, GPs’ own health, and patients’ health. We take advantage of the rare opportunity to combine these multiple risk attitude measures with a series of self-reported or administratively recorded medical practices. We successively test the predictive power of our seven risk attitude measures on eleven medical practices affecting the GPs’ own health or their patients’ health. We find that domain-specific measures are far better predictors than the general risk attitude measure. Neither of the two classes of tools (scales or lotteries) seems to perform indisputably better than the other, except when we concentrate on the only non-declarative practice (prescription of biological tests), for which the classic money-lottery test works well. From a public health perspective, appropriate measures of willingness to take risks may be used to make a quick, but efficient, profiling of GPs and target them with personalized communications, or interventions, aimed at improving practices.


Medical practices Risk attitude Lottery choice Scale Domain specificity 

JEL Classification

C93 D81 I10 



We thank all GPs who participated in the survey as well as members of the supervisory committee of the French Panel of General Practices. The French Panel of General Practices received funding from Direction de la Recherche, des Etudes, de l’Evaluation et des Statistiques (DREES) — Ministère du travail, des relations sociales, de la famille, de la solidarité et de la ville, Ministère de la santé et des sports, through a multiannual agreement on objectives. Aix-Marseille School of Economics (Agence Nationale de la Recherche — Labex) also provided financial support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Wennberg, J., Gittelsohn, A.: Small area variations in health care delivery. Science 182, 1102–1108 (1973)CrossRefPubMedGoogle Scholar
  2. 2.
    Corallo, A.N., Croxford, R., Goodman, D.C., Bryan, E.L., Srivastava, D., Stukel, T.A.: A systematic review of medical practice variation in OECD countries. Health Policy (New York) 114, 5–14 (2014). doi: 10.1016/j.healthpol.2013.08.002 CrossRefGoogle Scholar
  3. 3.
    Béjean, S., Peyron, C., Urbinelli, R.: Variations in activity and practice patterns: a French study for GPs. Eur. J. Health Econ. 8, 225–236 (2007). doi: 10.1007/s10198-006-0023-4 CrossRefPubMedGoogle Scholar
  4. 4.
    Jaye, C., Tilyard, M.: A qualitative comparative investigation of variation in general practitioners’ prescribing patterns. Br. J. Gen. Pract. 52, 381–386 (2002)PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wennberg, J.E.: Dealing with medical practice variations: a proposal for action. Health Aff. 3, 6–32 (1984)CrossRefGoogle Scholar
  6. 6.
    Eeckhoudt, L., Lebrun, T., Sailly, J.: Risk-aversion and physicians’ medical decision-making. J. Health Econ. 4, 273–281 (1985)CrossRefPubMedGoogle Scholar
  7. 7.
    Eddy, D.M.: Variations in physician practice: the role of uncertainty. Health Aff. 3, 74–89 (1984). doi: 10.1377/hlthaff.3.2.74 CrossRefGoogle Scholar
  8. 8.
    Gerrity, M.S., DeVellis, R.F., Earp, J.A.: Physicians’ reactions to uncertainty in patient care. A new measure and new insights. Med. Care 28, 724–736 (1990)CrossRefPubMedGoogle Scholar
  9. 9.
    DeForge, B.R., Sobal, J.: Intolerance of ambiguity among family practice residents. Fam. Med. 23, 466–468 (1991)PubMedGoogle Scholar
  10. 10.
    Geller, G., Tambor, E.S., Chase, G.A., Holtzman, N.A.: Measuring physicians’ tolerance for ambiguity and its relationship to their reported practices regarding genetic testing. Med. Care 31, 989–1001 (1993)CrossRefPubMedGoogle Scholar
  11. 11.
    Hancock, J., Roberts, M., Monrouxe, L., Mattick, K.: Medical student and junior doctors’ tolerance of ambiguity: development of a new scale. Adv. Health Sci. Educ. 20, 113–130 (2015). doi: 10.1007/s10459-014-9510-z CrossRefGoogle Scholar
  12. 12.
    Pearson, S.D., Goldman, L., Orav, E.J., Guadagnoli, E., Garcia, T.B., Johnson, P.A., Lee, T.H.: Triage decisions for emergency department patients with chest pain: do physicians’ risk attitudes make the difference? J. Gen. Intern. Med. 10, 557–564 (1995)CrossRefPubMedGoogle Scholar
  13. 13.
    Hey, J.D., Orme, C.D.: Investigating generalizations of expected utility theory using experimental data. Econometrica 62, 1291–1326 (1994)CrossRefGoogle Scholar
  14. 14.
    Binswanger, H.P.: Attitudes toward risk: theoretical implications of an experiment in rural India. Econ. J. 91, 867 (1981). doi: 10.2307/2232497 CrossRefGoogle Scholar
  15. 15.
    Eckel, C.C., Grossman, P.J.: Sex differences and statistical stereotyping in attitudes towards financial risk. Evol. Hum. Behav. 23, 281–295 (2002). doi: 10.1016/S1090-5138(02)00097-1 CrossRefGoogle Scholar
  16. 16.
    Holt, C., Laury, S.: Risk aversion and incentive effects. Am. Econ. Rev. 92, 1644–1655 (2002)CrossRefGoogle Scholar
  17. 17.
    Abdellaoui, M., Bleichrodt, H., L’Haridon, O.: A tractable method to measure utility and loss aversion under prospect theory. J. Risk Uncertain. 36, 245–266 (2008). doi: 10.1007/s11166-008-9039-8 CrossRefGoogle Scholar
  18. 18.
    Barsky, R.B., Juster, F.T., Kimball, M.S., Shapiro, M.D.: Preference parameters and behavioral heterogeneity: an experimental approach in the health and retirement study. Quarterly J. Econ. 112, 537–579 (1997). doi: 10.1162/003355397555280 CrossRefGoogle Scholar
  19. 19.
    Anderson, L.R., Mellor, J.M.: Predicting health behaviors with an experimental measure of risk preference. J. Health Econ. 27, 1260–1274 (2008). doi: 10.1016/j.jhealeco.2008.05.011 CrossRefPubMedGoogle Scholar
  20. 20.
    Charness, G., Gneezy, U., Imas, A.: Experimental methods: eliciting risk preferences. J. Econ. Behav. Organ. 87, 43–51 (2013). doi: 10.1016/j.jebo.2012.12.023 CrossRefGoogle Scholar
  21. 21.
    Hellerstein, D., Higgins, N., Horowitz, J.: The predictive power of risk preference measures for farming decisions. Eur. Rev. Agric. Econ. 40, 807–833 (2013). doi: 10.1093/erae/jbs043 CrossRefGoogle Scholar
  22. 22.
    Kapteyn, A., Teppa, F.: Subjective measures of risk aversion, fixed costs, and portfolio choice. J. Econ. Psychol. 32, 564–580 (2011). doi: 10.1016/j.joep.2011.04.002 CrossRefGoogle Scholar
  23. 23.
    Coppola, M.: Eliciting risk-preferences in socio-economic surveys: how do different measures perform? J. Socio. Econ. 48, 1–10 (2014). doi: 10.1016/j.socec.2013.08.010 CrossRefGoogle Scholar
  24. 24.
    Lönnqvist, J., Verkasalo, M., Walkowitz, G.: Measuring individual risk attitudes in the lab: task or ask? An empirical comparison. J. Econ. Behav. Organ. 119, 254–266 (2015). doi: 10.1016/j.jebo.2015.08.003 CrossRefGoogle Scholar
  25. 25.
    Dohmen, T., Falk, A., Huffman, D., Sunde, U., Schupp, J., Wagner, G.G.: Individual risk attitudes: measurement, determinants, and behavioral consequences. J. Eur. Econ. Assoc. 9, 522–550 (2011). doi: 10.1111/j.1542-4774.2011.01015.x CrossRefGoogle Scholar
  26. 26.
    Weber, E.U., Blais, A.-R., Betz, N.E.: A domain-specific risk-attitude scale: measuring risk perceptions and risk behaviors. J. Behav. Decis. Mak. 15, 263–290 (2002). doi: 10.1002/bdm.414 CrossRefGoogle Scholar
  27. 27.
    Hanoch, Y., Johnson, J.G., Wilke, A.: Domain specificity in experimental measures and participant recruitment. Psychol. Sci. 17, 300–304 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    Prosser, L.A., Wittenberg, E.: Do risk attitudes differ across domains and respondent types? Med. Decis. Mak. 27, 281–287 (2007)CrossRefGoogle Scholar
  29. 29.
    Attema, A.E., Brouwer, W.B.F., l’Haridon, O.: Prospect theory in the health domain: a quantitative assessment. J. Health Econ. 32, 1057–1065 (2013). doi: 10.1016/j.jhealeco.2013.08.006 CrossRefPubMedGoogle Scholar
  30. 30.
    van der Pol, M., Ruggeri, M.: Is risk attitude outcome specific within the health domain? J. Health Econ. 27, 706–717 (2008). doi: 10.1016/j.jhealeco.2007.10.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Masseria, C., Irwin, R., Thomson, S., Gemmill, M., Mossialos, E.: Primary care in Europe. London Sch. Econ, London (2009). (Policy brief) Google Scholar
  32. 32.
    Peabody, J.W., Luck, J., Glassman, P., Dresselhaus, T.R., Lee, M.: Comparison of vignettes, standardized patients, and chart abstraction: a prospective validation study of 3 methods for measuring quality. JAMA 283, 1715–1722 (2000)CrossRefPubMedGoogle Scholar
  33. 33.
    Chapman, G.B., Coups, E.J.: Predictors of influenza vaccine acceptance among healthy adults. Prev. Med. (Baltim) 29, 249–262 (1999). doi: 10.1006/pmed.1999.0535 CrossRefGoogle Scholar
  34. 34.
    Massin, S., Ventelou, B., Nebout, A., Verger, P., Pulcini, C.: Cross-sectional survey: risk-averse French general practitioners are more favorable toward influenza vaccination. Vaccine 33, 610–614 (2015). doi: 10.1016/j.vaccine.2014.12.038 CrossRefPubMedGoogle Scholar
  35. 35.
    Long, J.S.: Regression models for categorical and limited dependent variables. Sage Publications, Thousand Oaks (1997)Google Scholar
  36. 36.
    Camerer, C.F., Hogarth, R.M.: The effects of financial incentives in experiments: a review and capital-labor-production framework. J. Risk Uncertain. 19, 7–42 (1999). doi: 10.1023/A:1007850605129 CrossRefGoogle Scholar
  37. 37.
    Read, D.: Monetary incentives, what are they good for? J. Econ. Methodol. 12, 265–276 (2005). doi: 10.1080/13501780500086180 CrossRefGoogle Scholar
  38. 38.
    Bardsley, N., Cubitt, R., Loomes, G., Moffatt, P., Starmer, C., Sugden, R.: Incentives in experiments. Experimental economics: rethinking the rules, pp. 244–285. Princeton University Press, Princeton (2009)Google Scholar
  39. 39.
    Beattie, J., Loomes, G.: The impact of incentives upon risky choice experiments. J. Risk Uncertain. 14, 155–168 (1997). doi: 10.1016/S0167-6687(97)89209-8 CrossRefGoogle Scholar
  40. 40.
    Nebout, A., Cavillon, M., Ventelou, B.: Comparing GPs’ risk attitudes for their own health and for their patients’: a troubling discrepancy? BMC Health Serv. Res. (forthcoming)Google Scholar
  41. 41.
    Epstein, A.M., Begg, C.B., McNeil, B.J.: The effects of physicians’ training and personality on test ordering for ambulatory patients. Am. J. Public Health 74, 1271–1273 (1984)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Holtgrave, D.R., Lawler, F., Spann, S.J.: Physicians’ risk attitudes, laboratory usage, and referral decisions: the case of an academic family practice center. Med. Decis. Mak. 11, 125–130 (1991)CrossRefGoogle Scholar
  43. 43.
    Allison, J.J., Kiefe, C.I., Cook, E.F., Gerrity, M.S., Orav, E.J., Centor, R.: The association of physician attitudes about uncertainty and risk taking with resource use in a Medicare HMO. Med. Decis. Mak. 18, 320–329 (1998)CrossRefGoogle Scholar
  44. 44.
    Michel-Lepage, A., Ventelou, B., Nebout, A., Verger, P., Pulcini, C.: Cross-sectional survey: risk-averse French GPs use more rapid-antigen diagnostic tests in tonsillitis in children. BMJ Open. 3, e003540 (2013). doi: 10.1136/bmjopen-2013-003540 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Picone, G., Sloan, F., Taylor, D.: Effects of risk and time preference and expected longevity on demand for medical tests. J. Risk Uncertain. 28, 39–53 (2004). doi: 10.1023/B:RISK.0000009435.11390.23 CrossRefGoogle Scholar
  46. 46.
    Khwaja, A., Silverman, D., Sloan, F.: Time preference, time discounting, and smoking decisions. J. Health Econ. 26, 927–949 (2007). doi: 10.1016/j.jhealeco.2007.02.004 CrossRefPubMedGoogle Scholar
  47. 47.
    Kwietniewski, L., Heimeshoff, M., Schreyo, J.: Estimation of a physician practice cost function. Eur. J. Heal. Econ. (2016). doi: 10.1007/s10198-016-0804-3 CrossRefGoogle Scholar
  48. 48.
    Dourgnon, P., Naiditch, M.: The preferred doctor scheme: a political reading of a French experiment of gate-keeping. Health Policy (New York) 94, 129–134 (2010). doi: 10.1016/j.healthpol.2009.09.001 CrossRefGoogle Scholar
  49. 49.
    Michel-Lepage, A., Ventelou, B.: The true impact of the French pay-for-performance program on physicians’ benzodiazepines prescription behavior. Eur. J. Health Econ. 17, 723–732 (2016). doi: 10.1007/s10198-015-0717-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Artois University, UMR 9221, Lille Economie Management (LEM), UFR EGASSArras CedexFrance
  2. 2.ALISS UR1303, INRA, Université Paris-SaclayIvry-Sur-SeineFrance
  3. 3.Aix-Marseille Univ, CNRS, EHESS, Centrale Marseille, Aix-Marseille School of EconomicsMarseilleFrance
  4. 4.Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information MédicaleMarseilleFrance
  5. 5.The Regional Health Observatory of Provence-Alpes-Cote d’Azur (ORS-PACA)MarseilleFrance

Personalised recommendations