The European Journal of Health Economics

, Volume 19, Issue 6, pp 807–820 | Cite as

Measuring the end-of-life premium in cancer using individual ex ante willingness to pay

  • S. OlofssonEmail author
  • U.-G. Gerdtham
  • L. Hultkrantz
  • U. Persson
Original Paper


For the assessment of value of new therapies in healthcare, Health Technology Assessment (HTA) agencies often review the cost per quality-adjusted life-year (QALY) gained. Some HTA agencies accept a higher cost per QALY gained when treatment is aimed at prolonging survival for patients with a short expected remaining lifetime, a so-called end-of-life (EoL) premium. The objective of this study is to elicit the existence and size of an EoL premium in cancer. Data was collected from 509 individuals in the Swedish general population 20–80 years old using a web-based questionnaire. Preferences were elicited using subjective risk estimation and the contingent valuation (CV) method. A split-sample design was applied to test for order bias. The mean value of a QALY was MSEK4.8 (€528,000), and there was an EoL premium of 4–10% at 6 months of expected remaining lifetime. Using subjective risk resulted in more robust and valid estimates of the value of a QALY. Order of scenarios did not have a significant impact on the WTP and the result showed scale sensitivity. Our result provides some support for the use of an EoL premium based on individual preferences when expected remaining lifetime is short and below 24 months. Furthermore, we find support for a value of a QALY that is above the current threshold of several HTA agencies.


Willingness to pay End of life Value of a QALY Cancer Individual preferences Contingent valuation 

JEL Classification

D61 D8 I18 J17 


Compliance with ethical standards


Janssen Pharmaceutica NV funded the project through an unrestricted Grant to IHE.

Conflict of interest

The authors declare that they have no conflicts of interest.


The study is a survey of the general population. No ethical approval was applied for since participants could not be identified and the study did not involve collection of sensitive information.


  1. 1.
    Svensson, M., Nilsson, F.O., Arnberg, K.: Reimbursement decisions for pharmaceuticals in Sweden: the impact of disease severity and cost effectiveness. PharmacoEconomics 33(11), 1229–1236 (2015)CrossRefPubMedGoogle Scholar
  2. 2.
    Trafikverket: Analysmetod och samhällsekonomiska kalkylvärden för transportsektorn: ASEK 6.0, Kapitel 9: Trafiksäkerhet och olyckskostnader. [cited 2016 2 May]. (2016). Accessed 02 May 2016
  3. 3.
    TLV: TLV: suppdrag angående omregleringar av apoteksmarknaden. (2010). cited 18 April 2016
  4. 4.
    NICE: Guide to the methods of technology appraisal 2013. (2013). cited 18 April 2016
  5. 5.
    Baker, R., et al.: Searchers vs. surveyors in estimating the monetary value of a QALY: resolving a nasty dilemma for NICE. Health Econ. Policy Law 6(4), 435–447 (2011)CrossRefPubMedGoogle Scholar
  6. 6.
  7. 7.
    TLV: Beslut 1205/2012, Zelboraf. [cited 2016 18 April]. (2012). Accessed on 18 April 2016
  8. 8.
    TLV: Beslut 3122/2011, Zytiga. [cited 2016 18 April]. (2012). Accessed on 18 April 2016
  9. 9.
    TLV: Beslut 2775/2013, Xtandi. [cited 2016 18 April]. (2014). Accessed on 18 April 2016
  10. 10.
    Engström, I.: Plånboken bör inte få avgöra tillgång till nya effektiva läkemedel Läkartidningen. 112, DEU6 (2015)Google Scholar
  11. 11.
    Devlin, N., Lorgelly, P.: QALY as a measure of value in cancer. J. Cancer Policy (2016). doi: 10.1016/j.jcpo.2016.09.005 CrossRefGoogle Scholar
  12. 12.
    Brouwer, W., et al.: The new myth: the social value of the QALY. PharmacoEconomics 26(1), 1–4 (2008)CrossRefPubMedGoogle Scholar
  13. 13.
    Gyrd-Hansen, D.: Willingness to pay for a QALY: theoretical and methodological issues. PharmacoEconomics 23(5), 423–432 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    Hammitt, J.K.: Admissible utility functions for health, longevity, and wealth: integrating monetary and life-year measures. J. Risk Uncertain. 47, 311–325 (2013)CrossRefGoogle Scholar
  15. 15.
    Weinstein, M.C.: How much are Americans willing to pay for a quality-adjusted life year? Med. Care 46(4), 343–345 (2008)CrossRefPubMedGoogle Scholar
  16. 16.
    Baker, R., et al.: Weighting and valuing quality-adjusted life-years using stated preference methods: preliminary results from the social value of a QALY project. Health Technol. Assess. 14(27), 1–162 (2010). doi: 10.3310/hta14270 CrossRefPubMedGoogle Scholar
  17. 17.
    Dolan, P., Edlin, R., Tsuchiya A.: The relative societal value of health gains to different beneficiaries. HEDS Dicussion Paper 08/12, University of Sheffield (2008)Google Scholar
  18. 18.
    Pinto-Prades, J.L., Loomes, G., Brey, R.: Trying to estimate a monetary value for the QALY. J. Health Econ. 28(3), 553–562 (2009)CrossRefPubMedGoogle Scholar
  19. 19.
    Ryen, L., Svensson M.: The willingness to pay for a quality adjusted life year: a review of the empirical literature. Health Econ. (2014)Google Scholar
  20. 20.
    NICE: National Institute for Clinical Excellence—Appraising life-extending,   treatments. (2009). cited 18 April 2016
  21. 21.
    Linley, W.G., Hughes, D.A.: Societal views on NICE, cancer drugs fund and value-based pricing criteria for prioritising medicines: a cross-sectional survey of 4118 adults in Great Britain. Health Econ. 22, 948–964 (2013)CrossRefPubMedGoogle Scholar
  22. 22.
    Shah, K.K., Tsuchiya, A., Wailoo, A.J.: Valuing health at the end of life: an empirical study of public preferences. Eur. J. Health Econ. HEPAC Health Econ. Prev. Care 15(4), 389–399 (2014)CrossRefGoogle Scholar
  23. 23.
    Abel Olsen, J.: Priority preferences: “End of life” does not matter, but total life does. Value Health 16, 1063–1066 (2013)CrossRefPubMedGoogle Scholar
  24. 24.
    Shah, K.K., Tsuchiya, A., Wailoo, A.J.: Valuing health at the end of life: a stated preference discrete choice experiment. Soc. Sci. Med. 124, 48–56 (2015)CrossRefPubMedGoogle Scholar
  25. 25.
    Dolan, P., et al.: An inquiry into the different perspectives that can be used when eliciting preferences in health. Health Econ. 12, 545–551 (2003)CrossRefPubMedGoogle Scholar
  26. 26.
    Dolan, P., Green, C.: Using the person trade-off approach to examine differences between individual and social values. Health Econ. 7(4), 307–312 (1998)CrossRefPubMedGoogle Scholar
  27. 27.
    Pinto Prades, J., et al.: Valuing QALYs at the end of life. Soc. Sci. Med. 113, 5–14 (2014)CrossRefPubMedGoogle Scholar
  28. 28.
    Gafni, A.: Willingness-to-pay as a measure of benefits. Relevant questions in the context of public decision-making about health care programs. Med. Care 29(12), 1246–1252 (1991)CrossRefPubMedGoogle Scholar
  29. 29.
    Gyrd-Hansen, D.: Is there additional value attached to health gains at the end-of-life? A re-visit. COHERE—Centre of Health Economics Research, University of Southern Denmark, 2017. COHERE discussion paper No. 2/2017Google Scholar
  30. 30.
    Gu, Y., et al.: Attributes and weights in health care priority setting: a systematic review of what counts and to what extent. Soc. Sci. Med. 146, 41–52 (2015)CrossRefPubMedGoogle Scholar
  31. 31.
    Shah, K.: Does society wish to place greater weight on a unit of health gain for end-of-life patients than on that for other types of patients? Value Health 19(3), A266–A267 (2016)CrossRefGoogle Scholar
  32. 32.
    Shah, K.: Is willingness to pay higher for cancer prevention and treatment? J. Cancer Policy 11, 60–64 (2017)CrossRefGoogle Scholar
  33. 33.
    Andersson, H., Svensson, M.: Cognitive ability and scale bias in the contingent valuation method. Environ. Resour. Econ. 39, 481–495 (2008)CrossRefGoogle Scholar
  34. 34.
    Carson, R.T., Flores, N., Hanemann, M.: Sequencing and valuing public goods. J Environ. Econ. Manag. 36, 314–323 (1998)CrossRefGoogle Scholar
  35. 35.
    Pickard, A.S., et al.: Health utilities using the EQ-5D in studies of cancer. PharmacoEconomics 25(5), 365–384 (2007)CrossRefPubMedGoogle Scholar
  36. 36.
    Bateman, I.J., et al.: Economic valuation with stated preference techniques—a manual. UK Department for Transport, Edward Elgar Publishing, Cheltenham (2002)CrossRefGoogle Scholar
  37. 37.
    Covey, J., Loomes, G., Bateman, I.: Valuing risk reductions: testing for range bias in payment card and random card sorting methods. J. Environ. Plan. Manag. 50(4), 467–482 (2007)CrossRefGoogle Scholar
  38. 38.
    Johannesson, M.: Theory and methods of economic evaluation of health care. Kluwer Academic Publishers, The Netherlands (1996)CrossRefGoogle Scholar
  39. 39.
    Svensson, M.: The value of a statistical life in Sweden: estimates from two studies using the “Certainty Approach” calibration. Accid. Anal. Prev. 41, 430–437 (2009)CrossRefPubMedGoogle Scholar
  40. 40.
    Blumenschein, K., et al.: Hypothetical versus real willingness to pay in the health care sector: results from a field experiment. J. Health Econ. 20, 441–457 (2001)CrossRefPubMedGoogle Scholar
  41. 41.
    Loomis, J.B.: 2013 WAEA Keynote Address: strategies for overcoming hypothetical bias in stated preference surveys. J. Agric. Resour. Econ. 39(1), 34–36 (2014)Google Scholar
  42. 42.
  43. 43.
    SCB: Utbildningsnivå för befolkningen efter inrikes/utrikes född, kön och åldersgrupp 2015. (2016). cited 4 July 2016
  44. 44.
    SCB: Sammanräknad förvärvsinkomst för boende i Sverige den 31/12 resp år (antal personer, medel-och medianinkomst samt totalsumma) efter region, kön, ålder och inkomstklass. År 1991-2014 (Urval: medianinkomst, riket, båda könen, 20 år+, 2014). (2016). cited 22 Aug 2016
  45. 45.
    TLV: Ändring i Tandvårds- och läkemedelsförmånsverkets allmänna råd (TLVAR 2003:2) om ekonomiska utvärderingar (TLV 2017:1). cited 16 June 2017
  46. 46.
    Gyrd-Hansen, D., Kjaer, T.: Disentangling WTP per QALY data: different analytical approaches, different answers. Health Econ. 21(3), 222–237 (2012)CrossRefPubMedGoogle Scholar
  47. 47.
  48. 48.
    Shepard, D.S., Zeckhauser, R.J.: Survival versus consumption. Manage 30(4), 423–439 (1984)Google Scholar
  49. 49.
    Aviles Blanco, M.V., et al.: Emotions and scope effects in the monetary valuation of health. Eur. J. Health Econ. 1–11 (2017). doi: 10.1007/s10198-017-0885-7
  50. 50.
    Johannesson, M., Meltzer, D.: Some reflections on cost-effectiveness analysis. Health Econ. 7(1), 1–7 (1998)CrossRefPubMedGoogle Scholar
  51. 51.
    Viscusi, W.K.: Fatal tradeoffs: public and private responsibilities for risk. Oxford University Press, New York (1992)Google Scholar
  52. 52.
    de Blaeij, A., et al.: The value of statistical life in road safety: a meta-analysis. Accid. Anal. Prev. 35, 973–986 (2003)CrossRefPubMedGoogle Scholar
  53. 53.
    Hultkrantz, L., Svensson, M.: The value of a statistical life in Sweden: a review of the empirical literature. Health Policy 108(2–3), 302–310 (2012)CrossRefPubMedGoogle Scholar
  54. 54.
    Viscusi, W.K., Huber, J., Bell, J.: Assessing whether there is a cancer premium for the value of a statistical life. Health Econ. 23, 384–396 (2014)CrossRefPubMedGoogle Scholar
  55. 55.
    Alberini, A., Scasny, M.: Exploring heterogenity in the value of a statistical life: cause of death v. risk perceptions. Ecol. Econ. 94, 143–155 (2013)CrossRefGoogle Scholar
  56. 56.
    Jones-Lee, M., Hammerton, M., Philips, P.R.: The value of safety: results of a national sample survey. Econ. J. 95, 49–72 (1985)CrossRefGoogle Scholar
  57. 57.
    Mason, H., Jones-Lee, M., Donaldson, C.: Modelling the monetary value of a QALY: a new approach based on UK data. Health Econ. 18(8), 933–950 (2009)CrossRefPubMedGoogle Scholar
  58. 58.
    Gyrd-Hansen, D., Jensen, M.L., Kjaer, T.: Framing the willingness-to-pay question: impact on response patterns and mean willingness to pay. Health Econ. 23(5), 550–563 (2014)CrossRefPubMedGoogle Scholar
  59. 59.
    Bobinac, A., et al.: The value of a QALY: individual willingness to pay for health gains under risk. PharmacoEconomics 32(1), 75–86 (2014)CrossRefPubMedGoogle Scholar
  60. 60.
    Payne, J., et al.: Valuation of multiple environmental programs. J. Risk Uncertain. 21(1), 95–115 (2000)CrossRefGoogle Scholar
  61. 61.
    Nielsen, J., Kjaer, T.: Does question order influence sensitivity to scope? Empirical findings from a web-based contingent valuation survey. J. Environ. Plan. Manag. 54(3), 369–381 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.The Swedish Institute for Health Economics (IHE)LundSweden
  2. 2.Health Economics Unit, Department of Clinical Sciences, MalmöLund UniversityLundSweden
  3. 3.School of Economics and Management, Institute of Economic ResearchLund UniversityLundSweden
  4. 4.Department of Economics, School of Economics and ManagementLund UniversityLundSweden
  5. 5.School of BusinessÖrebro UniversityÖrebroSweden

Personalised recommendations