The European Journal of Health Economics

, Volume 16, Issue 1, pp 95–112 | Cite as

Health care expenditures and longevity: is there a Eubie Blake effect?

  • Friedrich Breyer
  • Normann Lorenz
  • Thomas Niebel
Original Paper


It is still an open question whether increasing life expectancy as such causes higher health care expenditures (HCE) in a population. According to the “red herring” hypothesis, the positive correlation between age and HCE is exclusively due to the fact that mortality rises with age and a large share of HCE is caused by proximity to death. As a consequence, rising longevity—through falling mortality rates—may even reduce HCE. However, a weakness of many previous empirical studies is that they use cross-sectional evidence to make inferences on a development over time. In this paper, we analyse the impact of rising longevity on the trend of HCE over time by using data from a pseudo-panel of German sickness fund members over the period 1997–2009. Using (dynamic) panel data models, we find that age, mortality and 5-year survival rates each have a positive impact on per-capita HCE. Our explanation for the last finding is that physicians treat patients more aggressively if the results of these treatments pay off over a longer time span, which we call “Eubie Blake effect”. A simulation on the basis of an official population forecast for Germany is used to isolate the effect of demographic ageing on real per-capita HCE over the coming decades. We find that, while falling mortality rates as such lower HCE, this effect is more than compensated by an increase in remaining life expectancy so that the net effect of ageing on HCE over time is clearly positive.


Health care expenditures Ageing Longevity 5-year survival rate 

JEL Classification

H51 J11 I19 



We are grateful to the Bundesversicherungsamt, Bonn, for the provision of the health care expenditure dataset, to the Statistische Bundesamt, Wiesbaden, for the provision of the demographic data, and to an anonymous referee for helpful suggestions. Valuable comments by James Binfield, Ralf Brüggemann, Terkel Christiansen, Victor R. Fuchs, Martin Karlsson, Florian Klohn, Winfried Pohlmeier, Niklas Potrafke, Esther Schuch and Volker Ulrich are gratefully acknowledged.


  1. 1.
    Arellano, M., Bond, S.: Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58(2), 277–297 (1991)CrossRefGoogle Scholar
  2. 2.
    Bech, M., Christiansen, T., Khoman, E., Lauridsen, J., Weale, M.: Ageing and health care expenditure in EU-15. Eur. J. Health Econ. 12(5), 469–478 (2011)PubMedCrossRefGoogle Scholar
  3. 3.
    Blundell, R., Bond, S.: Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 87(1), 115–143 (1998)CrossRefGoogle Scholar
  4. 4.
    Breyer, F., Felder, S.: Life expectancy and health care expenditure: A new calculation for Germany using the costs of dying. Health Policy 75(2), 178–186 (2006)PubMedCrossRefGoogle Scholar
  5. 5.
    Breyer, F., Hupfeld, S.: Fairness of public pensions and old-age poverty. FinanzArchiv 65, 358–380 (2009)CrossRefGoogle Scholar
  6. 6.
    Callahan, D.: Setting Limits: Medical Goals in an Aging Society. New York (1987)Google Scholar
  7. 7.
    Colombier, C., Weber, W.: Projecting health-care expenditure for Switzerland: further evidence against the ‘red-herring’ hypothesis. Int. J. Health Plan. Manag. 26(3), 246–263 (2011)CrossRefGoogle Scholar
  8. 8.
    Crimmins, E.M., Saito, Y., Ingegneri, D.: Trends in disability-free life expectancy in the United States, 1970–90. Popul. Dev. Rev. 23(3), 555–572 (1997)CrossRefGoogle Scholar
  9. 9.
    Daniels, N.: Just Health Care. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  10. 10.
    Davidson, R., MacKinnon, J.G.: Estimation and Inference in Econometrics. New York (1993)Google Scholar
  11. 11.
    Deaton, A.: Panel data from time series of cross-sections. J. Econom. 30(1–2), 109–126 (1985)CrossRefGoogle Scholar
  12. 12.
    Fang, H., Keane, M., Khwaja, A., Salm, M., Silverman, D.: Testing the mechanisms of structural models: The case of the Mickey mantle effect. Am. Econ. Rev. Papers Proc. 97(2), 53–59 (2007)CrossRefGoogle Scholar
  13. 13.
    Felder, S., Werblow, A., Zweifel, P.: Do red herrings swim in circles? Controlling for the endogeneity of time to death. J. Health Econ. 29(2), 205–212 (2010)PubMedCrossRefGoogle Scholar
  14. 14.
    Fuchs, V.: Though much is taken: Reflections on aging, health and medical care. Milbank Mem. Fund Q. Health Soc. 62(2), 143–166 (1984)PubMedCrossRefGoogle Scholar
  15. 15.
    Hagist, C., Klusen, N., Plate, A., Raffelhüschen, B.: Social Health Insurance—the Major Driver of Unsustainable Fiscal Policy?, CESifo Working Paper; No. 1574 (2005)Google Scholar
  16. 16.
    Hagist, C., Kotlikoff, L.: Who’s Going Broke? Comparing Growth in Healthcare costs in ten OECD Countries, NBER Working Paper; w11833 (2005)Google Scholar
  17. 17.
    Harris, R., Tzavalis, E.: Inference for unit roots in dynamic panels where the time dimension is fixed. J. Econom. 91(2), 201–226 (1999)CrossRefGoogle Scholar
  18. 18.
    Human Mortality Database: University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at or (data downloaded on May 31, 2011) (2011)
  19. 19.
    Hurst, S.A., Slowther, A.-M., Forde, R., Pegoraro, R., Reiter-Theil, S., Perrier, A., Garrett-Mayer, E., Danis, M.: Prevalence and determinants of physician bedside rationing. Data from Europe. J. Gen. Intern. Med. 21(11), 1138–1143 (2006)PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Im, K., Pesaran, M., Shin, Y.: Testing for unit roots in heterogeneous panels. J. Econom. 115, 53–74 (2003)CrossRefGoogle Scholar
  21. 21.
    Inkmann, J., Klotz, S., Pohlmeier, W.: Permanente Narben oder temporäre Blessuren? Eine Studie über die langfristigen Folgen eines missglückten Einstiegs in das Berufsleben auf der Grundlage von Pseudo-Panel-Daten. In: Pfeiffer, F., Pohlmeier, W. (eds) Qualifikation Weiterbildung und Arbeitsmarkterfolg, pp. 223–255. Nomos, Baden-Baden (1998)Google Scholar
  22. 22.
    Karlsson, M., Klohn, F.: Testing the red herring hypothesis on an aggregated level: ageing, time-to-death and care costs for older people in Sweden. Eur. J. Health Econ. (forthcoming)Google Scholar
  23. 23.
    Miller, T.: Increasing longevity and medicare expenditures. Demography 38(2), 215–226 (2001)PubMedCrossRefGoogle Scholar
  24. 24.
    Riley, G.F., Lubitz, J.D.: Long-term trends in medicare payments in the last year of life. Health Serv. Res. 45(2), 565–576 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Roodman, D.: “How to Do xtabond2: An Introduction to “Difference” and “System” GMM in Stata,” Center for Global Development Working Paper 103 (2006)Google Scholar
  26. 26.
    Seshamani, M., Gray, A.: Ageing and health-care expenditure: The red herring argument revisited. Health Econ. 13, 303–314 (2004)PubMedCrossRefGoogle Scholar
  27. 27.
    Shang, B., Goldman, D.: Does age or life expectancy better predict health care expenditures?. Health Econ. 17(4), 487–501 (2008)PubMedCrossRefGoogle Scholar
  28. 28.
    Statistisches Bundesamt: 12. koordinierte Bevölkerungsvorausberechnung. Wiesbaden (2009)Google Scholar
  29. 29.
    Stearns, S., Norton, E.: Time to include time to death? The future of health care expenditure predictions. Health Econ. 13(4), 315–327 (2004)PubMedCrossRefGoogle Scholar
  30. 30.
    Strech, D., Synofzik, M., Marckmann, G.: How physicians allocate scarce resources at the bedside: A systematic review of qualitative studies. J. Med. Philos. 33(1), 80–99 (2008)PubMedCrossRefGoogle Scholar
  31. 31.
    Tu, Y.-K., Krämer, N., Lee, W.-C.: Addressing the identification problem in age-period-cohort analysis. Epidemiology 23(4), 583–593 (2012)PubMedCrossRefGoogle Scholar
  32. 32.
    van Baal, P.H., Wong, A.: Time to death and the forecasting of macro-level health care expenditures: Some further considerations. J. Health Econ. 31(6), 876–887 (2012)PubMedCrossRefGoogle Scholar
  33. 33.
    von Gaudecker, H.-M., Scholz, R.: Differential mortality by lifetime earnings in Germany. Demographic Research. 17(4), 83–108 (2007)CrossRefGoogle Scholar
  34. 34.
    Werblow, A., Felder, S., Zweifel, P.: Population ageing and health care expenditure: A school of red herrings?. Health Econ. 146(10), 1109–1126 (2007)CrossRefGoogle Scholar
  35. 35.
    Yang, Y., Schulhofer-Wohl, S., Fu, W., Land, K.: The intrinsic estimator for age-period-cohort analysis: What it is and how to use it. Am. J. Sociol. 113(6), 1697–1736 (2008)CrossRefGoogle Scholar
  36. 36.
    Zweifel, P., Felder, S., Meier, M.: Ageing of population and health care expenditure: a red herring?. Health Econ. 8(6), 485–496 (1999)PubMedCrossRefGoogle Scholar
  37. 37.
    Zweifel, P., Felder, S., Werblow, A.: Population ageing and health care expenditure: New evidence on the red herring. Geneva Papers Risk Insur. Issues Pract. Spec. Issue Health Insur. 29(4), 652–666 (2004)CrossRefGoogle Scholar
  38. 38.
    Zweifel, P., Steinmann, L., Eugster, P.: The Sisyphus syndrome in health revisited. Int. J. Health Care Financ. Econ. 5(2), 127–145 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Friedrich Breyer
    • 1
  • Normann Lorenz
    • 2
  • Thomas Niebel
    • 3
  1. 1.Fachbereich WirtschaftswissenschaftenUniversität KonstanzKonstanzGermany
  2. 2.Universität TrierTrierGermany
  3. 3.Zentrum für Europäische Wirtschaftsforschung (ZEW)MannheimGermany

Personalised recommendations