Advertisement

AStA Advances in Statistical Analysis

, Volume 96, Issue 2, pp 127–153 | Cite as

Life tables in actuarial models: from the deterministic setting to a Bayesian approach

  • Annamaria Olivieri
  • Ermanno PitaccoEmail author
Original Paper

Abstract

The mortality dynamics experienced in the latest decades, especially at adult and old ages, has motivated the introduction of major innovations in the modeling of mortality for actuarial applications; such innovations concern, in particular, the representation of the uncertainty relating to aggregate mortality.

In this paper, we first provide a description of the traditional mortality model which is deterministic but also allows quite easily for a representation of the uncertainty relating to individual mortality. Then, we discuss a stochastic approach to the modeling of the uncertainty relating to aggregate mortality. Due to the importance of mortality evolution in respect of post-retirement liabilities, we refer to a portfolio of immediate life annuities (or pension annuities). We assume that a (projected) life table which provides a best-estimate assessment of annuitants’ future mortality is available. We show that the life table, from which a deterministic description of future mortality can be obtained, can be used as the basic input of appropriate stochastic models. In particular, we consider a Bayesian-inference setting for updating the parameters of the stochastic model according to the experienced mortality.

Keywords

Deterministic mortality Stochastic mortality Life annuities Random fluctuations Systematic deviations Process risk Uncertainty risk Longevity risk Bayesian inference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biffis, E.: Affine processes for dynamic mortality and actuarial valuations. Insur. Math. Econ. 37(3), 443–468 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  2. Biffis, E., Millossovich, P.: A bidimensional approach to mortality risk. Decis. Econ. Finance 29, 71–94 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bühlmann, H.: Mathematical Methods in Risk Theory. Springer, New York (1970) zbMATHGoogle Scholar
  4. Cairns, A.J.G.: A multifactor generalisation of the Olivier–Smith model for stochastic mortality. In: Proceedings of the 1st IAA-Life Colloquium, Stockholm (2007) Google Scholar
  5. Cairns, A.J.G., Blake, D., Dowd, K.: Pricing death: Frameworks for the valuation and securitization of mortality risk. ASTIN Bull. 36(1), 79–120 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  6. Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes Methods for Data Analysis. Chapman & Hall / CRC, Boca Raton (2000) zbMATHCrossRefGoogle Scholar
  7. CMI: An interim basis for adjusting the “92” series mortality projections for cohort effects. Working Paper 1, The Faculty of Actuaries and Institute of Actuaries (2002) Google Scholar
  8. CMI: Stochastic projection methodologies: Further progress and P-spline model features, example results and implications. Working Paper 20, The Faculty of Actuaries and Institute of Actuaries (2006) Google Scholar
  9. Dahl, M.: Stochastic mortality in life insurance. Market reserves and mortality-linked insurance contracts. Insur. Math. Econ. 35(1), 113–136 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  10. Dahl, M., Møller, T.: Valuation and hedging of life insurance liabilities with systematic mortality risk. Insur. Math. Econ. 39(2), 193–217 (2006) zbMATHCrossRefGoogle Scholar
  11. Haberman, S., Olivieri, A.: Risk classification / Life. In: Melnick, E., Everitt, B. (eds.) The Encyclopedia of Quantitative Risk Assessment and Analysis, pp. 1535–1540. Wiley, Chichester (2008) Google Scholar
  12. Hardy, M.R., Panjer, H.H.: A credibility approach to mortality risk. ASTIN Bull. 28(2), 269–283 (1998) zbMATHCrossRefGoogle Scholar
  13. Lee, R., Carter, L.R.: Modelling and forecasting U.S. mortality. J. Am. Stat. Assoc. 87(14), 659–675 (1992) Google Scholar
  14. Li, J.S.H., Hardy, M.R., Tan, K.S.: Uncertainty in mortality forecasting: An extension to the classic Lee-Carter approach. ASTIN Bull. 39(1), 137–164 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  15. Marocco, P., Pitacco, E.: Longevity risk and life annuity reinsurance. In: Transactions of the 26th International Congress of Actuaries, Birmingham, vol. 6, pp. 453–479 (1998) Google Scholar
  16. Olivier, P., Jeffrey, T.: Stochastic mortality models. Presentation to the Society of Actuaries in Ireland (2004) Google Scholar
  17. Olivieri, A.: Uncertainty in mortality projections: An actuarial perspective. Insur. Math. Econ. 29(2), 231–245 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  18. Olivieri, A.: Heterogeneity in survival models. Applications to pensions and life annuities. Belg. Actuar. Bull. 6, 23–39 (2006) Google Scholar
  19. Olivieri, A.: Stochastic mortality: Experience-based modeling and application issues consistent with Solvency 2. Eur. Actuar. J. 1(Suppl. 1), S101–S125 (2011) MathSciNetCrossRefGoogle Scholar
  20. Olivieri, A., Pitacco, E.: Inference about mortality improvements in life annuity portfolios. In: Transactions of the 27th International Congress of Actuaries, Cancun (Mexico) (2002) Google Scholar
  21. Olivieri, A., Pitacco, E.: Solvency requirements for pension annuities. J. Pension Econ. Finance 2, 127–157 (2003) CrossRefGoogle Scholar
  22. Olivieri, A., Pitacco, E.: Stochastic mortality: The impact on target capital. ASTIN Bull. 39(2), 541–563 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  23. Panjer, H., Willmot, G.: Insurance Risk Models. The Society of Actuaries, Schaumberg (1992) Google Scholar
  24. Pitacco, E.: From Halley to “frailty”: A review of survival models for actuarial calculations. G. Ist. Ital. Attuari 67(1–2), 17–47 (2004) Google Scholar
  25. Pitacco, E., Denuit, M., Haberman, S., Olivieri, A.: Modelling Longevity Dynamics for Pensions and Annuity Business. Oxford University Press, Oxford (2009) zbMATHGoogle Scholar
  26. Robert, C.D., Casella, G.: Monte Carlo Statistical Methods. Springer, Berlin (2004) zbMATHGoogle Scholar
  27. Smith, A.D.: Stochastic mortality modelling. Talk at the Workshop on the Interface between Quantitative Finance and Insurance, International Centre for Mathematical Science, Edinburgh (2005) Google Scholar
  28. Sweeting, P.J.: Making the most of experience data—An augmented Beta-Binomial approach. Discussion Paper PI-1012, The Pension Institute, Cass Business School, City University, London (2010) Google Scholar
  29. Tuljapurkar, S., Boe, C.: Mortality change and forecasting: How much and how little do we know. N. Am. Actuar. J. 2(4), 13–47 (1998) MathSciNetzbMATHGoogle Scholar
  30. Vaupel, J.W., Manton, K.G., Stallard, E.: The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16(3), 439–454 (1979) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dipartimento di Economia, Faculty of EconomicsUniversity of ParmaParmaItaly
  2. 2.Dipartimento DEAMS, Faculty of EconomicsUniversity of TriesteTriesteItaly

Personalised recommendations