AStA Advances in Statistical Analysis

, Volume 94, Issue 2, pp 157–166

Introduction of a new measure for detecting poor fit due to omitted nonlinear terms in SEM

Original Paper


The model chi-square that is used in linear structural equation modeling compares the fitted covariance matrix of a target model to an unstructured covariance matrix to assess global fit. For models with nonlinear terms, i.e., interaction or quadratic terms, this comparison is very problematic because these models are not nested within the saturated model that is represented by the unstructured covariance matrix. We propose a novel measure that quantifies the heteroscedasticity of residuals in structural equation models. It is based on a comparison of the likelihood for the residuals under the assumption of heteroscedasticity with the likelihood under the assumption of homoscedasticity. The measure is designed to respond to omitted nonlinear terms in the structural part of the model that result in heteroscedastic residual scores. In a small Monte Carlo study, we demonstrate that the measure appears to detect omitted nonlinear terms reliably when falsely a linear model is analyzed and the omitted nonlinear terms account for substantial nonlinear effects. The results also indicate that the measure did not respond when the correct model or an overparameterized model were used.


Heteroscedasticity Monte Carlo study Nonlinear model Structural equation modeling Interaction effect Quadratic effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbuckle, J.L.: AMOS Users’ Guide Version 3.6. Small Waters Corporation, Chicago (1997) Google Scholar
  2. Barendse, M.T., Oort, F.J., Garst, G.J.A.: Using restricted factor analysis with latent moderated structures to detect uniform and nonuniform measurement bias: A simulation study. Adv. Stat. Anal. (2010). doi:10.1007/s10182-010-0126-1 Google Scholar
  3. Bentler, P.M.: EQS Structural Equations Program Manual, Multivariate Software, Encino (1995) Google Scholar
  4. Bentler, P.M., Wu, E.J.C.: EQS/Windows User’s Guide, BMDP Statistical Software, Los Angeles (1993) Google Scholar
  5. Ganzach, Y.: Misleading interaction and curvilinear terms. Psychol. Methods 2, 235–247 (1997) CrossRefGoogle Scholar
  6. Geiser, C., Eid, M., Nussbeck, F.W., Courvoisier, D.S., Cole, D.A.: Multitrait-multimethod change modeling. Adv. Stat. Anal. (2010). doi:10.1007/s10182-010-0127-0 MATHGoogle Scholar
  7. Jak, S., Oort, F.J., Garst, G.J.A.: Measurement bias and multidimensionality: An illustration of bias detection in multidimensional measurement models. Adv. Stat. Anal. (2010). doi:10.1007/s10182-010-0128-z Google Scholar
  8. Jöreskog, K.G., Sörbom, D.: New Features in LISREL 8. Scientific Software, Chicago (1993) Google Scholar
  9. Jöreskog, K.G., Sörbom, D.: LISREL 8: User’s Reference Guide. Scientific Software, Chicago (1996) Google Scholar
  10. Jöreskog, K.G., Yang, F.: Nonlinear structural equation models: The Kenny-Judd model with interaction effects. In: Marcoulides, G.A., Schumacker, R.E. (eds.) Advanced Structural Equation Modeling, pp. 57–87. Erlbaum, Mahwah (1996) Google Scholar
  11. King-Kallimanis, B.L., Oort, F.J., Garst, G.J.A.: Using structural equation modelling to detect measurement bias and response shift in longitudinal data. Adv. Stat. Anal. (2010). doi:10.1007/s10182-010-0129-y Google Scholar
  12. Klein, A., Moosbrugger, H.: Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika 65, 457–474 (2000) CrossRefMathSciNetGoogle Scholar
  13. Muthén, L.K., Muthén, B.O.: Mplus User’s Guide, 5th edn. Muthén & Muthén, Los Angeles (2007) Google Scholar
  14. Schermelleh-Engel, K., Werner, C.S., Klein, A.G., Moosbrugger, H.: Nonlinear structural equation modeling: Is partial least squares an alternative? Stat. Anal. (2010). doi:10.1007/s10182-010-0132-3 Google Scholar
  15. Stuart, A., Ord, J.K., Arnold, S.: Kendall’s Advanced Theory of Statistics, 6th edn, vol. 5A. Oxford University Press, New York (1999) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Western Ontario, SSCLondonCanada
  2. 2.Division of Psychological Research Methods and Evaluation, Department of PsychologyGoethe UniversityFrankfurt am MainGermany

Personalised recommendations