AStA Advances in Statistical Analysis

, Volume 91, Issue 3, pp 279–290 | Cite as

On the inefficiency of propensity score matching

Original Paper

Abstract

Propensity score matching is now widely used in empirical applications for estimating treatment effects. Propensity score matching (PSM) is preferred to matching on X because of the lower dimension of the estimation problem. In this note, however, it is shown that PSM is inefficient compared to matching on X. Hence, matching on X should be considered as a serious alternative.

Keywords

Propensity score matching Average treatment effect Efficiency  

References

  1. 1.
    Abadie, A., Imbens, G. (2006a) Large sample properties of matching estimators for average treatment Effects. Econometrica 74, 235–267MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abadie, A., Imbens, G. (2006b) On the failure of the bootstrap for matching estimators. NBER Technical Working Paper No. 325Google Scholar
  3. 3.
    Begun, J., Hall, W., Huang, W., Wellner, J. (1983) Information and asymptotic efficiency in parametric-nonparametric models. Annals of Statistics 11, 432–452MATHMathSciNetGoogle Scholar
  4. 4.
    Bickel, P., Klaassen, C., Ritov, Y., Wellner, J. (1993) Efficient and Adaptive Estimation for Semiparametric Models. John Hopkins University Press, BaltimoreMATHGoogle Scholar
  5. 5.
    Black, D., Smith, J. (2004) How robust is the evidence on the effects of college quality? Evidence from matching. Journal of Econometrics 121, 99–124MathSciNetGoogle Scholar
  6. 6.
    Bourdon, J., Frölich, M., Michaelowa, K. (2007) Teacher Shortages, Teacher Contracts and their Impact on Education in Africa. IZA Discussion paper 2844Google Scholar
  7. 7.
    Fan, J. (1992) Design-adaptive nonparametric regression. Journal of American Statistical Association 87, 998–1004MATHCrossRefGoogle Scholar
  8. 8.
    Fan, J., Gijbels, I. (1996) Local Polynomial Modeling and its Applications. Chapman and Hall, LondonGoogle Scholar
  9. 9.
    Frölich, M. (2004) Finite sample properties of propensity-score matching and weighting estimators. The Review of Economics and Statistics 86, 77–90CrossRefGoogle Scholar
  10. 10.
    Frölich, M. (2005) Matching estimators and optimal bandwidth choice. Statistics and Computing 15(3), 197–215CrossRefMathSciNetGoogle Scholar
  11. 11.
    Frölich, M. (2006) Nonparametric regression for binary dependent variables. Econometrics Journal 9, 511–540MATHCrossRefGoogle Scholar
  12. 12.
    Frölich, M. (2007) Propensity score matching without conditional independence assumption – with an application to the gender wage gap in the UK. Econometrics Journal 10, 359–407CrossRefGoogle Scholar
  13. 13.
    Frölich, M., Heshmati, A., Lechner, M. (2004) A microeconometric evaluation of rehabilitation of long-term sickness in Sweden. Journal of Applied Econometrics 19, 375–396CrossRefGoogle Scholar
  14. 14.
    Frölich, M., Michaelowa, K. (2005) Peer effects and textbooks in primary education: evidence from Francophone Sub-Saharan Africa. IZA Discussion paper 1519Google Scholar
  15. 15.
    Gerfin, M., Lechner, M. (2002) Microeconometric evaluation of the active labour market policy in Switzerland. Economic Journal 112, 854–893CrossRefGoogle Scholar
  16. 16.
    Gozalo, P., Linton, O. (2000) Local nonlinear least squares: Using parametric information in nonparametric regression. Journal of Econometrics 99, 63–106MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hahn, J. (1998) On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 66, 315–331MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Heckman, J., Ichimura, H., Smith, J., Todd, P. (1998a) Characterizing selection bias using experimental data. Econometrica 66, 1017–1098MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Heckman, J., Ichimura, H., Todd, P. (1998b) Matching as an econometric evaluation estimator. Review of Economic Studies 65, 261–294MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hirano, K., Imbens, G., Ridder, G. (2003) Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71, 1161–1189MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Koshevnik, Y., Levit, B. (1976) On a non-parametric analogue of the information matrix. Theory of Probability and Applications 21, 738–753MATHCrossRefGoogle Scholar
  22. 22.
    Larsson, L. (2003) Evaluation of swedish youth labour market programmes. Journal of Human Resources 38, 891–927CrossRefMathSciNetGoogle Scholar
  23. 23.
    Lechner, M. (1999) Earnings and employment effects of continuous off-the-job training in East Germany after unification. Journal of Business and Economic Statistics 17, 74–90CrossRefGoogle Scholar
  24. 24.
    Lechner, M. (2002) Program heterogeneity and propensity score matching: An application to the evaluation of active labor market policies. The Review of Economics and Statistics 84, 205–220CrossRefGoogle Scholar
  25. 25.
    Newey, W. (1990) Semiparametric efficiency bounds. Journal of Applied Econometrics 5, 99–135MATHCrossRefGoogle Scholar
  26. 26.
    Newey, W. (1994) The asymptotic variance of semiparametric estimators. Econometrica 62, 1349–1382MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Pfanzagl, J., Wefelmeyer, W. (1982) Contributions to a general asymptotic statistical theory. Springer, HeidelbergMATHGoogle Scholar
  28. 28.
    Racine, J., Li, Q. (2004) Nonparametric estimation of regression functions with both categorical and continuous data. Journal of Econometrics 119, 99–130CrossRefMathSciNetGoogle Scholar
  29. 29.
    Rosenbaum, P., Rubin, D. (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Rosenbaum, P., Rubin, D. (1985) The bias due to incomplete matching. Biometrics 41, 103–116MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Rubin, D. (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688–701CrossRefGoogle Scholar
  32. 32.
    Rubin, D., Thomas, N. (1992) Affinely invariant matching methods with ellip-soidal distributions. Annals of Statistics 20, 1079–1093MATHMathSciNetGoogle Scholar
  33. 33.
    Rubin, D., Thomas, N. (1996) Matching using estimated propensity scores: relating theory to practice. Biometrics 52, 249–264MATHCrossRefGoogle Scholar
  34. 34.
    Rubin, D., Thomas, N. (2000) Combining propensity score matching with additional adjustments for prognostic covariates. Journal of the American Statistical Association 95, 573–585CrossRefGoogle Scholar
  35. 35.
    Sianesi, B. (2004) An evaluation of the swedish system of active labor market programs in the 1990s. The Review of Economics and Statistics 86, 133–155CrossRefGoogle Scholar
  36. 36.
    Smith, J., Todd, P. (2005) Does matching overcome LaLonde’s critique of nonexperimental estimators? Journal of Econometrics 125, 305–353CrossRefMathSciNetGoogle Scholar
  37. 37.
    Stein, C. (1956) Efficient nonparametric testing and estimation. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. University of California Press, BerkeleyGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.SIAWUniversität St. GallenSt. GallenSwitzerland

Personalised recommendations