Allgemeines Statistisches Archiv

, Volume 90, Issue 1, pp 167–181 | Cite as

Ordered response models

  • Stefan Boes
  • Rainer Winkelmann
Articles

Summary

We discuss regression models for ordered responses, such as ratings of bonds, schooling attainment, or measures of subjective well-being. Commonly used models in this context are the ordered logit and ordered probit regression models. They are based on an underlying latent model with single index function and constant thresholds. We argue that these approaches are overly restrictive and preclude a flexible estimation of the effect of regressors on the discrete outcome probabilities. For example, the signs of the marginal probability effects can only change once when moving from the smallest category to the largest one. We then discuss several alternative models that overcome these limitations. An application illustrates the benefit of these alternatives.

Keywords

Marginal effects generalized threshold sequential model random coefficients latent class analysis happiness. JEL C25, 125 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, J., Silvey, S. D. (1957). The generalization of probit analysis to the case of multiple repsonses. Biometrika44 131–140.MATHMathSciNetCrossRefGoogle Scholar
  2. Agresti, A. (1999). Modelling ordered categorical data: Recent advances and future challenges. Statistics in Medicine18 2191–2207.CrossRefGoogle Scholar
  3. Anderson, J. A. (1984). Regression and ordered categorical variables. Journal of the Royal Statistical Society, Series B46 1–30.MATHGoogle Scholar
  4. Barnhart, H. X., Sampson, A. R. (1994). Overview of multinomial models for ordered data. Communications in Statistics—Theory and Methods23 3395–3416.MATHMathSciNetGoogle Scholar
  5. Bellemare C., Melenberg, B., van Soest, A. (2002). Semi-parametric models for satisfaction with income. Portuguese Economic Journal1 181–203.CrossRefGoogle Scholar
  6. Boes, S., Winkelmann, R. (2004). Income and happiness: New results from generalized threshold and sequential models. IZA Discussion Paper No. 1175, SOI Working Paper No. 0407, Bonn.Google Scholar
  7. Brant, R. (1990). Assessing proportionality in the proportional odds model for ordered logistic regression. Biometrics46 1171–1178.CrossRefGoogle Scholar
  8. Clogg, C. C., Shihadeh, E. S. (1994). Statistical Models for Ordered Variables. Sage Publications, Thousand Oaks.Google Scholar
  9. Cox, C. (1995). Location-scale cumulative odds models for ordered data: A generalized non-linear model approach. Statistics in Medicine14 1191–1203.Google Scholar
  10. Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B39 1–38.MATHMathSciNetGoogle Scholar
  11. Easterlin, R. (1973). Does money buy happiness?. Public Interest30 3–10.Google Scholar
  12. Easterlin, R. (1974). Does economic growth improve the humal lot? Some empirical evidence. In Nations and Households in Economic Growth: Essays in Honor of Moses Abramowitz (P. David, M. Reder, eds.), 89–125. Academic Press, New York.Google Scholar
  13. Everitt, B. S. (1988). A finite mixture model for the clustering of mixed-mode data. Statistics and Probability Letters6 305–309.MathSciNetCrossRefGoogle Scholar
  14. Everitt, B. S., Merette, C. (1990). The clustering of mixed-mode data: A comparison of possible approaches. Journal of Applied Statistics17 283–297.Google Scholar
  15. Fienberg, S. E. (1980). The Analysis of Cross-Clasisfication Categorical Data. MIT Press, Cambridge.Google Scholar
  16. Frey, B. S., Luechinger, S., Stutzer, A. (2004). Valuing public goods: The life satisfaction approach. CESifo Working Paper No. 1158, München.Google Scholar
  17. Frey, B. S., Stutzer, A. (2000). Happiness, economy and institutions. The Economic Journal110 918–938.CrossRefGoogle Scholar
  18. Frey, B. S., Stutzer, A. (2002). Happiness and Economics: How the Economy and Institutions Affect Human Well-Being. Princeton University Press, Princeton and Oxford.Google Scholar
  19. Maddala, G. (1983). Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press, Cambridge.MATHGoogle Scholar
  20. McCullagh, P. (1980). Regression models for ordered data. Journal of the Royal Statistical Society, Series B42 109–142.MATHMathSciNetGoogle Scholar
  21. McKelvey, R., Zavoina, W. (1975). A statistical model for the analysis of ordered level dependent variables. Journal of Mathematical Sociology4 103–120.MATHMathSciNetCrossRefGoogle Scholar
  22. Olsson, U. (1979). Maximum-likelihood estimation of the polychoric correlation coefficient. Psychometrika44 443–460.MATHMathSciNetCrossRefGoogle Scholar
  23. Ronning, G. (1990). The informational content of responses from business surveys. In Microeconometrics. Surveys and Applications (J. P. Florens, M. Ivaldi, J. J. Laffont, F. Laisney, eds.), 123–144. Basil Blackwell, Oxford.Google Scholar
  24. Ronning, G., Kukuk, M. (1996). Efficient estimation of ordered probit models. Journal of the American Statistical Association91 1120–1129.MATHMathSciNetCrossRefGoogle Scholar
  25. Scitovsky, T. (1975). Income and happiness. Acta Oeconomica15 45–53.Google Scholar
  26. Shields, M., Wheatley Price, S. (2005). Exploring the economic and social determinations of psychological well-being and perceived social support in England. Journal of The Royal Statistical Society, Serie A168 513–537.MathSciNetMATHGoogle Scholar
  27. Snell, E. J. (1964). A scaling procedure for ordered categorical data. Biometrics20 592–607.MATHMathSciNetCrossRefGoogle Scholar
  28. Stewart, M. B. (2004). A comparison of semiparametric estimators for the ordered response model. Computational Statistics and Data Analysis49 555–573.CrossRefGoogle Scholar
  29. Terza, J. (1985). Ordered probit: A generalization. Communications in Statistics—Theory and Methods14 1–11.Google Scholar
  30. Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of Mathematical and Statistical Psychology43 39–55.MATHMathSciNetGoogle Scholar
  31. Tutz, G. (1991). Sequential models in ordered regression. Computational Statistics and Data Analysis11 275–295.MATHMathSciNetCrossRefGoogle Scholar
  32. Uebersax, J. S. (1999). Probit latent class analysis with dichotomous or ordered category measures: Conditional independence/dependence models. Applied Psychological Measurement23 283–297.CrossRefGoogle Scholar
  33. van Praag, B. M. S., Baarsma, B. E. (2005). Using happiness surveys to value intangibles: The case of airport noise The Economic Journal115 224–246.CrossRefGoogle Scholar
  34. Winkelmann, L., Winkelmann, R. (1998). Why are the unemployed so unhappy? Evidence from panel data. Economica65 1–15.CrossRefGoogle Scholar
  35. Winship, C., Mare, R. D. (1984). Regression models with ordered variables. American Sociological Review. 49 512–525.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Stefan Boes
    • 1
  • Rainer Winkelmann
    • 2
  1. 1.Socioeconomic InstituteUniversity of ZurichZurichSwitzerland
  2. 2.Socioeconomic InstituteUniversity of ZurichZurichSwitzerland

Personalised recommendations