Advertisement

AStA Advances in Statistical Analysis

, Volume 91, Issue 1, pp 3–21 | Cite as

A Hausman test for Brownian motion

  • Martin Becker
  • Ralph Friedmann
  • Stefan Klößner
  • Walter Sanddorf-Köhle
Original Paper

Abstract

New tests are proposed for the specification of the intraday price process of a risky asset, based on open, high, low, and close prices. Under the null of a Brownian process we derive two stochastically independent, unbiased volatility estimators. For a Hausman specification test we prove its equivalence with an F-test, consider its robustness against variation in drift and volatility, and analyze the power against an Ornstein–Uhlenbeck process, as well as a random walk with alternative distributions.

Keywords

Hausman test Brownian process High-Low-Prices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alizadeh, S., Brandt, M.W., Diebold, F.X. (2002) Range-based estimation of stochastic volatility models. Journal of Finance 57, 1047–1092CrossRefGoogle Scholar
  2. 2.
    Ball, C.A., Torous, W.N. (1984) The maximum likelihood estimation of security price volatility: Theory, evidence, and application to option pricing. Journal of Business 57, 97–112CrossRefGoogle Scholar
  3. 3.
    Becker, M., Friedmann, R., Klößner, S., Sanddorf-Köhle, W. (2006) Highs, lows, and overreaction in intraday price movements. Paper presented at the Far Eastern Meeting of the Econometric Society, BeijingGoogle Scholar
  4. 4.
    Beckers, S. (1983) Variances of security price returns based on high, low, and closing prices. Journal of Business 56, 97–112CrossRefGoogle Scholar
  5. 5.
    Billingsley, P. (1968) Convergence of probability measures. John Wiley &Sons, New YorkMATHGoogle Scholar
  6. 6.
    Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307–328MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brandt, M.W., Diebold, F.X. (2006) A no-arbitrage approach to range-based estimation of return covariances and correlations. Journal of Business 79, 61–74CrossRefGoogle Scholar
  8. 8.
    Garman, M.B., Klass, M.J. (1980) On the estimation of security price volatilities from historical data. Journal of Business 53, 67–78CrossRefGoogle Scholar
  9. 9.
    Gourieroux, C., Jasiak, J. (2001) Financial Econometrics: Problems, Models, and Methods. Princeton University Press, Princeton NJMATHGoogle Scholar
  10. 10.
    Hausman, J. (1978) Specification tests in econometrics. Econometrica 46, 1251–1271MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Johnson, N.L., Kotz, S., Balakrishnan, N. (1995) Continuous Univariate Distributions, Vol. 2, 2nd ed. John Wiley &Sons, New YorkMATHGoogle Scholar
  12. 12.
    Klößner, S. (2006) Empirical evidence: Intraday returns are neither symmetric nor Lévy Processes. Paper presented at Statistische Woche, DresdenGoogle Scholar
  13. 13.
    Lildholdt, P.M. (2002) Estimation of GARCH models based on open, close, high, and low prices. University of Aarhus Center for Analytical Finance. Working paper 128Google Scholar
  14. 14.
    Lo, A., MacKinlay, A.C. (1988) Stock market prices do not follow random walks: evidence from a simple specification test. Review of Financial Studies 1, 41–66CrossRefGoogle Scholar
  15. 15.
    Mihai, S.M. (2005) Verteilungsmodelle und Risikomaße für Minimalrenditen. Shaker Verlag, AachenGoogle Scholar
  16. 16.
    Parkinson, M. (1980) The extreme value method for estimating the variance of the rate of return. Journal of Business 53, 61–65CrossRefGoogle Scholar
  17. 17.
    Patnaik, P.B. (1949) The non-central χ2 and F-distributions and their applications. Biometrika 36, 202–232MATHMathSciNetGoogle Scholar
  18. 18.
    Rogers, L.C.G., Satchell, S.E. (1991) Estimating variance from high, low and closing prices. The Annals of Applied Probability 1, 504–512MATHMathSciNetGoogle Scholar
  19. 19.
    Rogers, L.C.G., Satchell, S.E., Yoon, Y. (1994) Estimating the volatility of stock prices: a comparison of methods that use high and low prices. Applied Financial Economics 4, 241–247Google Scholar
  20. 20.
    Rogers, L.C.G., Zhou, F. (2006) Estimating correlation from high, low, opening and closing prices. University of Cambridge. Working paper, August 23Google Scholar
  21. 21.
    Seshadri, V. (1988) Exponential models, Brownian motion and independence. Canadian Journal of Statistics 16, 209–221MATHMathSciNetGoogle Scholar
  22. 22.
    Wiggins, J.B. (1991) Empirical tests of the bias and efficiency of the extreme-value variance estimator for common stocks. Journal of Business 64, 417–432CrossRefGoogle Scholar
  23. 23.
    Yang, D., Zhang, Q. (2000) Drift-independent volatility estimation based on high, low, open, and close prices. Journal of Business 73, 477–491CrossRefGoogle Scholar
  24. 24.
    Yor, M. (1997) Some remarks about the joint law of Brownian motion and its supremum, Séminaire de probabilités (Strasbourg) XXXI, Springer Lecture Notes in Mathematics 1655, 306–314Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Martin Becker
    • 1
  • Ralph Friedmann
    • 1
  • Stefan Klößner
    • 1
  • Walter Sanddorf-Köhle
    • 1
  1. 1.Lehrstuhl für Statistik und ÖkonometrieUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations