Elevated miR-29a expression is not correlated with disease activity index in PBMCs of patients with ankylosing spondylitis

  • Jinxian Huang
  • Guoxiang Song
  • Zhihua Yin
  • Xiuxia Luo
  • Zhizhong Ye
Original Article
  • 174 Downloads

Abstract

Objectives

Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by new bone formation. Recent evidence suggests that new bone formation in AS may be due to upregulation of Wnt signaling in the osteoblastic pathway secondary to low serum Dickkopf homolog 1 (Dkk-1) levels. And miR-29a orchestrates osteoblast differentiation through direct targeting and negative regulation of Dkk-1.

Methods

We initially validated the expression levels of miR-29a in the peripheral blood mononuclear cells (PBMCs) of AS patients (n = 30), rheumatoid arthritis (RA) patients (n = 30) and healthy controls (n = 30) using real-time quantitative reverse transcription PCR (qRT-PCR). Correlation analysis was assessed between miR-29a level in PBMCs of AS patients and disease activity indexes, including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), Bath ankylosing spondylitis disease activity index (BASDAI), Bath ankylosing spondylitis function index (BASFI) and modified Stoke ankylosing spondylitis spinal score (mSASSS).

Results

Significantly higher expression of miR-29a was observed in PBMCs of AS patients (Ct 9.18 ± 1.96) compared with that in RA patients (10.97 ± 0.70, p < 0.001) and healthy controls (Ct 11.45 ± 1.23, p < 0.001). There was no significant difference between RA patients and healthy controls in miR-29a expression (p > 0.05). Elevated miR-29a expression is not correlated with disease activity index (p > 0.05). A weak correlation was found between elevated miR-29a expression and mSASSS (r = −0.393, p = 0.032).

Conclusions

We report for the first time elevated miR-29a expression in PBMCs of patients with ankylosing spondylitis, and miR-29a might be used as a useful diagnostic marker in new bone formation but cannot reflect disease activity.

Keywords

Ankylosing spondylitis miR-29a Dkk-1 

References

  1. 1.
    Daoussis D, Andonopoulos AP. The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling? Semin Arthritis Rheum. 2011;41(2):170–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Taylan A, Sari I, Akinci B, Bilge S, Kozaci D, Akar S, et al. Biomarkers and cytokines of bone turnover: extensive evaluation in a cohort of patients with ankylosing spondylitis. BMC Musculoskelet Disord. 2012;13:191.PubMedCrossRefGoogle Scholar
  3. 3.
    Kwon SR, Lim MJ, Suh CH, Park SG, Hong YS, Yoon BY, et al. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol Int. 2012;32(8):2523–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Hu Z, Xu M, Li Q, Lin Z, Liao Z, Cao S, et al. Adalimumab significantly reduces inflammation and serum Dkk-1 level but increases fatty deposition in lumbar spine in active ankylosing spondylitis. Int J Rheum Dis. 2012;15(4):358–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Daoussis D, Liossis SN, Solomou EE, Tsanaktsi A, Bounia K, Karampetsou M, et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum. 2010;62(1):150–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Heiland GR, Appel H, Poddubnyy D, et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71(4):572–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Uderhardt S, Diarra D, Katzenbeisser J, David JP, Zwerina J, Richards W, et al. Blockade of Dickkopf (Dkk)-1 induces fusion of sacroiliac joints. Ann Rheum Dis. 2010;69(3):592–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Ceribelli A, Yao B, Dominguez-Gutierrez PR, Nahid MA, Satoh M, Chan EK. MicroRNAs in systemic rheumatic diseases. Arthritis Res Ther. 2011;13(4):229.PubMedCrossRefGoogle Scholar
  9. 9.
    Alevizos I, Illei GG. MicroRNAs as biomarkers in rheumatic diseases. Nat Rev Rheumatol. 2010;6(7):391–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Schoolmeesters A, Eklund T, Leake D, Vermeulen A, Smith Q, Force Aldred S, et al. Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS ONE. 2009;4(5):e5605.PubMedCrossRefGoogle Scholar
  11. 11.
    Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem. 2010;285(33):25221–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31(3):315–24.PubMedCrossRefGoogle Scholar
  13. 13.
    van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27:361–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.PubMedCrossRefGoogle Scholar
  15. 15.
    van der Heijde D, Landewé R, Einstein S, Ory P, Vosse D, Ni L, et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum. 2008;58(5):1324–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13(2):156–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone. 2006;39:754–66.PubMedCrossRefGoogle Scholar
  18. 18.
    MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X, et al. Bone mass is inversely proportional to Dkk1 levels in mice. Bone. 2007;41:331–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Morvan F, Boulukos K, Clement-Lacroix P, Roman RS, Suc-Royer I, Vayssiere B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21:934–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang FS, Ko JY, Lin CL, Wu HL, Ke HJ, Tai PJ. Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone. 2007;40:485–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Creemers MC, Franssen MJ, van’t Hof MA, Gribnau FW, van de Putte LB, van Riel PL. Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis. 2005;64(1):127–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Baraliakos X, Listing J, Rudwaleit M, Sieper J, Braun J. Development of a radiographic scoring tool for ankylosing spondylitis only based on bone formation: addition of the thoracic spine improves sensitivity to change. Arthritis Rheum. 2009;61(6):764–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Ramiro S, van Tubergen A, Stolwijk C, Landewé R, van de Bosch F, Dougados M, et al. Scoring radiographic progression in ankylosing spondylitis: should we use the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) or the Radiographic Ankylosing Spondylitis Spinal Score (RASSS)? Arthritis Res Ther. 2013;15(1):R14.PubMedCrossRefGoogle Scholar
  24. 24.
    Dijkmans B, Emery P, Hakala M, Leirisalo-Repo M, Mola EM, Paolozzi L, et al. Etanercept in the longterm treatment of patients with ankylosing spondylitis. J Rheumatol. 2009;36(6):1256–64.PubMedCrossRefGoogle Scholar
  25. 25.
    van der Heijde D, Landewé R, Baraliakos X, Houben H, van Tubergen A, Williamson P, et al. Ankylosing spondylitis study for the evaluation of recombinant infliximab therapy study group. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum. 2008;58(10):3063–70.PubMedCrossRefGoogle Scholar
  26. 26.
    van der Heijde D, Salonen D, Weissman BN, Landewé R, Maksymowych WP, Kupper H, et al. Canadian (M03–606) study group; ATLAS study group. Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res Ther. 2009;11(4):R127.PubMedCrossRefGoogle Scholar
  27. 27.
    Poddubnyy D, Rudwaleit M, Haibel H, Listing J, Märker-Hermann E, Zeidler H, Braun J, et al. Effect of non-steroidal anti-inflammatory drugs on radiographic spinal progression in patients with axial spondyloarthritis: results from the German Spondyloarthritis Inception Cohort. Ann Rheum Dis. 2012;71(10):1616–22.PubMedCrossRefGoogle Scholar

Copyright information

© Japan College of Rheumatology 2013

Authors and Affiliations

  • Jinxian Huang
    • 2
  • Guoxiang Song
    • 1
  • Zhihua Yin
    • 2
  • Xiuxia Luo
    • 2
  • Zhizhong Ye
    • 2
  1. 1.The Third People’s Hospital of ShenzhenShenzhenChina
  2. 2.Rheumatology Department, The Fourth People’s Hospital of ShenzhenChina Rheumatology Institute of Guangdong Medical CollegeShenzhenChina

Personalised recommendations