Advertisement

Modern Rheumatology

, Volume 23, Issue 5, pp 1001–1007 | Cite as

Vitamin K2 administration is associated with decreased disease activity in patients with rheumatoid arthritis

  • Kosuke Ebina
  • Kenrin ShiEmail author
  • Makoto Hirao
  • Shoichi Kaneshiro
  • Tokimitsu Morimoto
  • Kota Koizumi
  • Hideki Yoshikawa
  • Jun Hashimoto
Original Article

Abstract

Objectives

Vitamin K2 (VitK2) is reported to induce not only bone mineralization of human osteoblasts and apoptosis of osteoclasts, but also apoptosis of rheumatoid arthritis (RA) synovial cells, while its clinical effect on disease activity of RA remains unknown.

Methods

158 female RA patients (mean age 62.5 years) who had not been treated with warfarin, biologics, or teriparatide were enrolled in this study. VitK2 (45 mg/day) was administered in 70 patients with a serum undercarboxylated osteocalcin level of >4.5 ng/ml or with decreased bone mineral density in spite of the treatment with other anti-osteoporosis medications, regardless of RA disease activity. A longitudinal study was conducted in 52 patients who were additionally treated with VitK2 without changing their other medications for three months.

Results

In the cross-sectional study, as compared to the VitK2-naïve group (n = 88), the VitK2-treated group (n = 70) showed lower serum CRP (1.7 ± 0.2 vs. 0.5 ± 0.1 mg/dl; P < 0.001), MMP-3 (220.4 ± 21.9 vs. 118.0 ± 14.4 ng/ml; P < 0.001), and DAS28-CRP (2.9 ± 0.1 vs. 2.4 ± 0.1; P < 0.05). In the longitudinal study, patients who were additionally treated with VitK2 showed significant decreases in serum CRP (1.1 ± 0.2 to 0.6 ± 0.2 mg/dl; P < 0.001), MMP-3 (160.1 ± 25.6 to 125.0 ± 17.8 ng/ml; P < 0.05), and DAS28-CRP (3.1 ± 0.2 to 2.4 ± 0.1; P < 0.001).

Conclusions

VitK2 may have the potential to improve disease activity besides osteoporosis in RA.

Keywords

C-reactive protein Disease Activity Score assessing 28 joints with CRP Matrix metalloproteinase-3 Rheumatoid arthritis Vitamin K2 

Notes

Acknowledgments

The authors thank Tadashi Koga (Biometrics Department, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan) and Sayaka Aoki (Department of Medical Informatics at Osaka University Medical Hospital) for their excellent help with the statistical analysis.

Conflict of interest

None.

References

  1. 1.
    Liu Y, Nelson AN, Lipsky JJ. Vitamin K-dependent carboxylase: mRNA distribution and effects of vitamin K deficiency and warfarin treatment. Biochem Biophys Res Commun. 1996;224:549–54.Google Scholar
  2. 2.
    Yamaguchi M, Taguchi H, Gao YH, Igarashi A, Tsukamoto Y. Effect of vitamin K2 (menaquinone-7) in fermented soybean (natto) on bone loss in ovariectomized rats. J Bone Miner Metab. 1999;17:23–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Akiyama Y, Hara K, Tajima T, Murota S, Morita I. Effect of vitamin K2 (menatetrenone) on osteoclast-like cell formation in mouse bone marrow cultures. Eur J Pharmacol. 1994;263:181–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Hirao M, Hashimoto J, Ando W, Ono T, Yoshikawa H. Response of serum carboxylated and undercarboxylated osteocalcin to alendronate monotherapy and combined therapy with vitamin K2 in postmenopausal women. J Bone Miner Metab. 2008;26:260–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Suzuki K, Tsuji S, Fukushima Y, Nakase T, Hamada M, Tomita T, et al. Clinical results of alendronate monotherapy and combined therapy with menatetrenone (VitK(2)) in postmenopausal RA patients. Mod Rheumatol. 2012 (in press).Google Scholar
  6. 6.
    Suttie JW. Synthesis of vitamin K-dependent proteins. FASEB J. 1993;7:445–52.PubMedGoogle Scholar
  7. 7.
    Yaguchi M, Miyazawa K, Katagiri T, Nishimaki J, Kizaki M, Tohyama K, et al. Vitamin K2 and its derivatives induce apoptosis in leukemia cells and enhance the effect of all-trans retinoic acid. Leukemia. 1997;11:779–87.Google Scholar
  8. 8.
    Yaguchi M, Miyazawa K, Otawa M, Katagiri T, Nishimaki J, Uchida Y, et al. Vitamin K2 selectively induces apoptosis of blastic cells in myelodysplastic syndrome: flow cytometric detection of apoptotic cells using APO2.7 monoclonal antibody. Leukemia. 1998;12:1392–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Fujita H, Tomiyama J, Tanaka T. Vitamin K2 combined with all-trans retinoic acid induced complete remission of relapsing acute promyelocytic leukaemia. Br J Haematol. 1998;103:584–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Miyazawa K, Nishimaki J, Ohyashiki K, Enomoto S, Kuriya S, Fukuda R, et al. Vitamin K2 therapy for myelodysplastic syndromes (MDS) and post-MDS acute myeloid leukemia: information through a questionnaire survey of multi-center pilot studies in Japan. Leukemia. 2000;14:1156–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Qu Z, Garcia CH, O’Rourke LM, Planck SR, Kohli M, Rosenbaum JT. Local proliferation of fibroblast-like synoviocytes contributes to synovial hyperplasia. Results of proliferating cell nuclear antigen/cyclin, c-myc, and nucleolar organizer region staining. Arthritis Rheum. 1994;37:212–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Nakazawa F, Matsuno H, Yudoh K, Katayama R, Sawai T, Uzuki M, et al. Methotrexate inhibits rheumatoid synovitis by inducing apoptosis. J Rheumatol. 2001;28:1800–8.PubMedGoogle Scholar
  13. 13.
    Okamoto H, Shidara K, Hoshi D, Kamatani N. Anti-arthritis effects of vitamin K(2) (menaquinone-4)—a new potential therapeutic strategy for rheumatoid arthritis. FEBS J. 2007;274:4588–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Inoue E, Yamanaka H, Hara M, Tomatsu T, Kamatani N. Comparison of Disease Activity Score (DAS)28—erythrocyte sedimentation rate and DAS28—C-reactive protein threshold values. Ann Rheum Dis. 2007;66:407–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Steinbrocker O, Traeger CH, Batterman RC. Therapeutic criteria in rheumatoid arthritis. J Am Med Assoc. 1949;140:659–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Hochberg MC, Chang RW, Dwosh I, Lindsey S, Pincus T, Wolfe F. The American College of Rheumatology 1991 revised criteria for the classification of global functional status in rheumatoid arthritis. Arthritis Rheum. 1992;35:498–502.PubMedCrossRefGoogle Scholar
  18. 18.
    Catrina AI, Ulfgren AK, Lindblad S, Grondal L, Klareskog L. Low levels of apoptosis and high FLIP expression in early rheumatoid arthritis synovium. Ann Rheum Dis. 2002;61:934–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Franz JK, Pap T, Hummel KM, Nawrath M, Aicher WK, Shigeyama Y, et al. Expression of sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis. Arthritis Rheum. 2000;43:599–607.PubMedCrossRefGoogle Scholar
  20. 20.
    Perlman H, Liu H, Georganas C, Koch AE, Shamiyeh E, Haines GK 3rd, et al. Differential expression pattern of the antiapoptotic proteins, Bcl-2 and FLIP, in experimental arthritis. Arthritis Rheum. 2001;44:2899–908.PubMedCrossRefGoogle Scholar
  21. 21.
    Schedel J, Gay RE, Kuenzler P, Seemayer C, Simmen B, Michel BA, et al. FLICE-inhibitory protein expression in synovial fibroblasts and at sites of cartilage and bone erosion in rheumatoid arthritis. Arthritis Rheum. 2002;46:1512–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim WU, Yoo SA, Min SY, Park SH, Koh HS, Song SW, et al. Hydroxychloroquine potentiates Fas-mediated apoptosis of rheumatoid synoviocytes. Clin Exp Immunol. 2006;144:503–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Wunder A, Schellenberger E, Mahmood U, Bogdanov A Jr, Muller-Ladner U, Weissleder R, et al. Methotrexate-induced accumulation of fluorescent annexin V in collagen-induced arthritis. Mol Imaging. 2005;4:1–6.PubMedGoogle Scholar
  24. 24.
    Criddle DN, Gillies S, Baumgartner-Wilson HK, Jaffar M, Chinje EC, Passmore S, et al. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem. 2006;281:40485–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Mokuda S, Okuda Y, Onishi M, Sawada N, Matoba K, Yamada A, et al. Postmenopausal women with rheumatoid arthritis who are treated with raloxifene or alendronate or glucocorticoids have lower serum undercarboxylated osteocalcin (ucOC) levels. J Endocrinol Invest. 2012;35:661–4.Google Scholar
  26. 26.
    Oelzner P, Muller A, Deschner F, Huller M, Abendroth K, Hein G, et al. Relationship between disease activity and serum levels of vitamin D metabolites and PTH in rheumatoid arthritis. Calcif Tissue Int. 1998;62:193–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Muller K, Kriegbaum NJ, Baslund B, Sorensen OH, Thymann M, Bentzen K. Vitamin D3 metabolism in patients with rheumatic diseases: low serum levels of 25-hydroxyvitamin D3 in patients with systemic lupus erythematosus. Clin Rheumatol. 1995;14:397–400.PubMedCrossRefGoogle Scholar

Copyright information

© Japan College of Rheumatology 2012

Authors and Affiliations

  • Kosuke Ebina
    • 1
  • Kenrin Shi
    • 1
    Email author
  • Makoto Hirao
    • 2
  • Shoichi Kaneshiro
    • 1
  • Tokimitsu Morimoto
    • 1
  • Kota Koizumi
    • 1
  • Hideki Yoshikawa
    • 1
  • Jun Hashimoto
    • 3
  1. 1.Department of OrthopaedicsOsaka University Graduate School of MedicineSuitaJapan
  2. 2.Department of OrthopaedicsNational Hospital Organization Osaka Minami Medical CenterKawachinaganoJapan
  3. 3.Department of RheumatologyNational Hospital Organization Osaka Minami Medical CenterKawachinaganoJapan

Personalised recommendations