Modern Rheumatology

, Volume 23, Issue 4, pp 729–740 | Cite as

Detection of gene expression signatures related to underlying disease and treatment in rheumatoid arthritis patients

  • Kyle A. SerikawaEmail author
  • Søren Jacobsen
  • Dorthe Lundsgaard
  • Brian A. Fox
  • Lone Hummelshoj
  • Lars K. Poulsen
  • Jan Fleckner
  • Klaus Stensgaard Frederiksen
Original Article



Gene expression signatures can provide an unbiased view into the molecular changes underlying biologically and medically interesting phenotypes. We therefore initiated this study to identify signatures that would be of utility in studying rheumatoid arthritis (RA).


We used microarray profiling of peripheral blood mononuclear cells (PBMCs) in 30 RA patients to assess the effect of different biologic agent (biologics) treatments and to quantify the degree of a type-I interferon (IFN) signature in these patients. A numeric score was derived for the quantification step and applied to patients with RA. To further characterize the IFN response in our cohort, we employed type-I IFN treatment of PBMCs in vitro and in reporter assays.


Profiling identified a subset of RA patients with upregulation of type-I IFN-regulated transcripts, thereby corroborating previous reports showing RA to be heterogeneous for an IFN component. A comparison of individuals currently untreated with a biologic with those treated with infliximab, tocilizumab, or abatacept suggested that each biologic induces a specific gene signature in PBMCs.


It is possible to observe signs of type-I IFN pathway activation in a subset of clinically active RA patients without C-reactive protein elevation. Furthermore, biologics-specific gene signatures in patients with RA indicate that looking for a biologic-specific response pattern may be a potential future tool for predicting individual patient response.


Abatacept Infliximab Interferon signature Microarray Rheumatoid arthritis Tocilizumab 


Conflict of interest

The authors declare that they have no conflict of interest with respect to the work reported here.

Supplementary material

10165_2012_723_MOESM1_ESM.doc (140 kb)
Supplementary material 1 (DOC 140 kb)
10165_2012_723_MOESM2_ESM.xls (127 kb)
Supplementary material 2 (XLS 127 kb)
10165_2012_723_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 14 kb)


  1. 1.
    Lequerre T, Coulouarn C, Derambure C, Lefebvre G, Vittecoq O, Daveau M, et al. A new tool for rheumatology: large-scale analysis of gene expression. Joint Bone Spine. 2003;70(4):248–56.PubMedCrossRefGoogle Scholar
  2. 2.
    van Baarsen LG, Bos CL, van der Pouw Kraan TC, Verweij CL. Transcription profiling of rheumatic diseases. Arthr Res Ther 2009;11(1):207.Google Scholar
  3. 3.
    Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA. 2003;100(5):2610–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Crow MK, Kirou KA, Wohlgemuth J. Microarray analysis of interferon-regulated genes in SLE. Autoimmunity. 2003;36(8):481–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Lequerre T, Bansard C, Vittecoq O, Derambure C, Hiron M, Daveau M, et al. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia. Arthr Res Ther. 2009;11(3):R99.CrossRefGoogle Scholar
  6. 6.
    Reynier F, Pachot A, Paye M, Xu Q, Turrel-Davin F, Petit F, et al. Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis. Genes Immun. 2010;11(3):269–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Bennett CN, Green JE. Genomic analyses as a guide to target identification and preclinical testing of mouse models of breast cancer. Toxicol Pathol. 2010;38(1):88–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Fayad W, Fryknas M, Brnjic S, Olofsson MH, Larsson R, Linder S. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters. PLoS One. 2009;4(10):e7238.PubMedCrossRefGoogle Scholar
  9. 9.
    Yao Y, Richman L, Higgs BW, Morehouse CA, de los Reyes M, Brohawn P, et al. Neutralization of interferon-alpha/beta-inducible genes and downstream effect in a phase I trial of an anti-interferon-alpha monoclonal antibody in systemic lupus erythematosus. Arthr Rheum. 2009;60(6):1785–96.CrossRefGoogle Scholar
  10. 10.
    Kunz G. Use of a genomic test (MammaPrintTM) in daily clinical practice to assist in risk stratification of young breast cancer patients. Arch Gynecol Obstet. 2011;283(3):597–602.Google Scholar
  11. 11.
    Bansard C, Lequerre T, Daveau M, Boyer O, Tron F, Salier JP, et al. Can rheumatoid arthritis responsiveness to methotrexate and biologics be predicted? Rheumatology (Oxford). 2009;48(9):1021–8.CrossRefGoogle Scholar
  12. 12.
    Koczan D, Drynda S, Hecker M, Drynda A, Guthke R, Kekow J, et al. Molecular discrimination of responders and nonresponders to anti-TNF alpha therapy in rheumatoid arthritis by etanercept. Arthr Res Ther. 2008;10(3):R50.CrossRefGoogle Scholar
  13. 13.
    Lequerre T, Gauthier-Jauneau AC, Bansard C, Derambure C, Hiron M, Vittecoq O, et al. Gene profiling in white blood cells predicts infliximab responsiveness in rheumatoid arthritis. Arthr Res Ther. 2006;8(4):R105.CrossRefGoogle Scholar
  14. 14.
    Sekiguchi N, Kawauchi S, Furuya T, Inaba N, Matsuda K, Ando S, et al. Messenger ribonucleic acid expression profile in peripheral blood cells from RA patients following treatment with an anti-TNF-alpha monoclonal antibody, infliximab. Rheumatology (Oxford). 2008;47(6):780–8.CrossRefGoogle Scholar
  15. 15.
    van Baarsen LG, Wijbrandts CA, Rustenburg F, Cantaert T, van der Pouw Kraan TC, Baeten DL, et al. Regulation of IFN response gene activity during infliximab treatment in rheumatoid arthritis is associated with clinical response to treatment. Arthr Res Ther. 2010;12(1):R11.CrossRefGoogle Scholar
  16. 16.
    van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, Voskuyl AE, Rustenburg F, Baggen JM, et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis. 2007;66(8):1008–14.Google Scholar
  17. 17.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthr Rheum. 1988;31(3):315–24.CrossRefGoogle Scholar
  18. 18.
    Prevoo ML, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthr Rheum. 1995;38(1):44–8.CrossRefGoogle Scholar
  19. 19.
    Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem. 1987;162(1):156–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34(2):374–8.PubMedGoogle Scholar
  21. 21.
    Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. TM4 microarray software suite. Methods Enzymol. 2006;411:134–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.PubMedCrossRefGoogle Scholar
  23. 23.
    Lleonart R, Naf D, Browning H, Weissmann C. A novel, quantitative bioassay for type I interferon using a recombinant indicator cell line. Biotechnology (N Y). 1990;8(12):1263–7.CrossRefGoogle Scholar
  24. 24.
    Yao Y, Higgs BW, Richman L, White B, Jallal B. Use of type I interferon-inducible mRNAs as pharmacodynamic markers and potential diagnostic markers in trials with sifalimumab, an anti-IFNalpha antibody, in systemic lupus erythematosus. Arthr Res Ther. 2010;12[Suppl 1]:S6.CrossRefGoogle Scholar
  25. 25.
    Bauer JW, Baechler EC, Petri M, Batliwalla FM, Crawford D, Ortmann WA, et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 2006;3(12):e491.PubMedCrossRefGoogle Scholar
  26. 26.
    Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197(6):711–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Crow MK. Type I. Interferon and autoimmune disease. Autoimmunity. 2003;36(8):445–6.Google Scholar
  28. 28.
    Lyons PA, McKinney EF, Rayner TF, Hatton A, Woffendin HB, Koukoulaki M, et al. Novel expression signatures identified by transcriptional analysis of separated leucocyte subsets in systemic lupus erythematosus and vasculitis. Ann Rheum Dis. 2010;69(6):1208–13.Google Scholar
  29. 29.
    Nikpour M, Dempsey AA, Urowitz MB, Gladman DD, Barnes DA. Association of a gene expression profile from whole blood with disease activity in systemic lupus erythaematosus. Ann Rheum Dis. 2008;67(8):1069–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity. 2006;25(3):383–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Bave U, Magnusson M, Eloranta ML, Perers A, Alm GV, Ronnblom L. Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol. 2003;171(6):3296–302.PubMedGoogle Scholar
  32. 32.
    Bave U, Nordmark G, Lovgren T, Ronnelid J, Cajander S, Eloranta ML, et al. Activation of the type I interferon system in primary Sjogren’s syndrome: a possible etiopathogenic mechanism. Arthr Rheum. 2005;52(4):1185–95.CrossRefGoogle Scholar
  33. 33.
    Eloranta ML, Barbasso HS, Ulfgren AK, Ronnblom L, Alm GV, Lundberg IE. A possible mechanism for endogenous activation of the type I interferon system in myositis patients with anti-Jo-1 or anti-Ro 52/anti-Ro 60 autoantibodies. Arthr Rheum. 2007;56(9):3112–24.CrossRefGoogle Scholar
  34. 34.
    Lovgren T, Eloranta ML, Bave U, Alm GV, Ronnblom L. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthr Rheum. 2004;50(6):1861–72.CrossRefGoogle Scholar
  35. 35.
    van Holten J, Smeets TJ, Blankert P, Tak PP. Expression of interferon beta in synovial tissue from patients with rheumatoid arthritis: comparison with patients with osteoarthritis and reactive arthritis. Ann Rheum Dis. 2005;64(12):1780–2.PubMedCrossRefGoogle Scholar
  36. 36.
    Thurlings RM, Boumans M, Tekstra J, van Roon JA, Vos K, van Westing DM, et al. Relationship between the type I interferon signature and the response to rituximab in rheumatoid arthritis patients. Arthritis Rheum 2010;62(12):3607–14.Google Scholar
  37. 37.
    Palucka AK, Blanck JP, Bennett L, Pascual V, Banchereau J. Cross-regulation of TNF and IFN-alpha in autoimmune diseases. Proc Natl Acad Sci USA. 2005;102(9):3372–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Reynier F, Petit F, Paye M, Turrel-Davin F, Imbert PE, Hot A, et al. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis. PLoS One. 2011;6(10):e24828.PubMedCrossRefGoogle Scholar
  39. 39.
    Bienkowska JR, Dalgin GS, Batliwalla F, Allaire N, Roubenoff R, Gregersen PK, et al. Convergent random forest predictor: methodology for predicting drug response from genome-scale data applied to anti-TNF response. Genomics. 2009;94(6):423–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Julia A, Erra A, Palacio C, Tomas C, Sans X, Barcelo P, et al. An eight-gene blood expression profile predicts the response to infliximab in rheumatoid arthritis. PLoS One. 2009;4(10):e7556.PubMedCrossRefGoogle Scholar
  41. 41.
    Feske S, Picard C, Fischer A. Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol. 2010;135(2):169–82.PubMedCrossRefGoogle Scholar
  42. 42.
    Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC. hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J Biol Chem. 1999;274(21):14838–49.PubMedCrossRefGoogle Scholar
  43. 43.
    Tang X, Pan F, Xia G, Liao F, Ge R, Mei Y, et al. A single-nucleotide polymorphism marker within the FCRL5 gene and HLA-B27 positive Han Chinese ankylosing spondylitis patients. Tissue Antigens. 2009;74(4):314–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Campbell JA, Davis RS, Lilly LM, Fremont DH, French AR, Carayannopoulos LN. Cutting edge: FcR-like 5 on innate B cells is targeted by a poxvirus MHC class I-like immunoevasin. J Immunol. 2010;185(1):28–32.PubMedCrossRefGoogle Scholar

Copyright information

© Japan College of Rheumatology 2012

Authors and Affiliations

  • Kyle A. Serikawa
    • 1
    Email author
  • Søren Jacobsen
    • 2
  • Dorthe Lundsgaard
    • 3
  • Brian A. Fox
    • 1
  • Lone Hummelshoj
    • 4
  • Lars K. Poulsen
    • 4
  • Jan Fleckner
    • 3
  • Klaus Stensgaard Frederiksen
    • 3
  1. 1.Novo Nordisk Inflammation Research CenterSeattleUSA
  2. 2.Department of RheumatologyCopenhagen University HospitalCopenhagenDenmark
  3. 3.Novo Nordisk A/SMåløvDenmark
  4. 4.Laboratory for Medical Allergology, Allergy ClinicCopenhagen University HospitalCopenhagenDenmark

Personalised recommendations