Advertisement

Journal of Ethology

, Volume 37, Issue 3, pp 325–333 | Cite as

Different levels of polyandry in two populations of the funnel-web wolf spider Aglaoctenus lagotis from South America

  • Macarena GonzálezEmail author
  • Fernando G. Costa
  • Alfredo V. Peretti
Article

Abstract

Populations of a species may show variation in mating systems, especially when the species is widely distributed. Aglaoctenus lagotis is a funnel-web wolf spider distributed in South America and with a ‘central Argentina form’ (CA) and a ‘southern Uruguay form’ (SU). Both forms differ in sexual behaviour, population density and copulatory season. This study evaluates the potential level of polyandry of both forms, sequentially exposing females to different males of their form under laboratory conditions. The number of copulations each female accepted and the characteristics of these sexual encounters were registered. CA females accepted more re-copulations than SU females and seemed to maintain more sexual attractiveness after the first copulation. In neither form was female re-copulation influenced by body characteristics, duration of the first copulation, ejaculation frequency or copulatory body shaking of females. Additionally, the PCA showed that both forms could be separated by their copulation behaviours. The higher level of polyandry in the CA form compared to the SU form suggested in our results adds another difference between these forms, currently under study to determine whether they are different species. This study is the first on mating systems in funnel-web wolf spiders, adding knowledge to the discussion about the evolution of sexual strategies in this group.

Keywords

Mating system Female receptivity Sexual behaviour Copulation Lycosidae 

Notes

Acknowledgements

We are very grateful to Anita Aisenberg, María José Albo, Fabiana Baldenegro, Luciana Baruffaldi, Silvana Burela, Soledad Ghione, Gabriel de Simone and María Elena Pérez for their help during the fieldwork. Laura Montes de Oca helped us in housing and breeding individuals in the laboratory, and John Henderson revised the language. We also thank Santiago Benitez-Vieyra, Margarita Chiaraviglio and Martín Ramirez (members of Macarena González’s Ph.D. monitoring committee) for their useful contributions. Financial support was provided by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fondo para la Investigación Científica y Tecnológica (FONCYT) and Secretaría de Ciencia y Tecnología (SECYT), Universidad Nacional de Córdoba. Finally, we thank the anonymous reviewers who have contributed to the improvement of the manuscript in a substantial way.

References

  1. Abramson JH (2004) WINPEPI (PEPI-for-Windows): computer programs for epidemiologists. Epidemiol Perspect Innov 1: 1–6Google Scholar
  2. Aisenberg A, Costa FG (2005) Females mated without sperm transfer maintain high sexual receptivity in the wolf spider Schizocosa malitiosa. Ethology 111:545–558CrossRefGoogle Scholar
  3. Aisenberg A, Estramil N, Toscano-Gadea C, González M (2009) Timing of female sexual unreceptivity and male adjustment of copulatory behaviour under competition risk in the wolf spider Schizocosa malitiosa. J Ethol 27:43–50CrossRefGoogle Scholar
  4. Andersson M (1994) Sexual selection. Princeton University Press, New JerseyGoogle Scholar
  5. Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164CrossRefGoogle Scholar
  6. Barboza FR (2014) Retomando el concepto de plasticidad fenotípica en el estudio de los modos reproductivos de anfibios anuros. Bol Soc Zool Uruguay 1(2):16–29Google Scholar
  7. Baruffaldi L, Costa FG (2010) Changes in male sexual responses from silk cues of females at different reproductive states in the wolf spider Schizocosa malitiosa. J Ethol 28:75–85CrossRefGoogle Scholar
  8. Blackburn GS, Maddison WP (2014) Stark sexual display divergence among jumping spider populations in the face of gene flow. Mol Ecol 23:5208–5223CrossRefGoogle Scholar
  9. Blumstein DT, Evans CS, Daniel JC (2000) JWatcher. http://galliform.psy.mq.edu.au/jwatcher/Accessed 13 Mar 2009
  10. Bonte D, Vanden Borre J, Lens L, Maelfait JP (2006) Geographical variation in wolf spider dispersal behavior is related to landscape structure. Anim Behav 72:655–662CrossRefGoogle Scholar
  11. Boulton RA, Shuker DM (2013) Polyandry. Curr Biol 23(24):1080–1081CrossRefGoogle Scholar
  12. Boulton RA, Shuker DM (2016) Polyandry is context dependent but not convenient in a mostly monandrous wasp. Anim Behav 112:119–125CrossRefGoogle Scholar
  13. Brys R, Broeck AV, Mergeay J, Jacquemynl H (2014) The contribution of mating system variation to reproductive isolation in two closely related Centaurium species (Gentianaceae) with a generalized flower morphology. Evolution 68(5):1281–1293CrossRefGoogle Scholar
  14. Choe JC, Crespi BJ (1997) The evolution of mating systems in insects and arachnids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Costa FG, Sotelo JR (1994) Stereotypy and versatility of the copulatory pattern in Lycosa malitiosa (Araneae, Lycosidae) at cool versus warm temperatures. J Arachnol 22:200–204Google Scholar
  16. Costa-Schmidt LE, Machado G (2012) Reproductive interference between two sibling species of gift-giving spiders. Anim Behav 84(5):1201–1211CrossRefGoogle Scholar
  17. Dick JTA (1995) The cannibalistic behaviour of two Gammarus species (Crustacea: Amphipoda). J Zool 236:697–706CrossRefGoogle Scholar
  18. Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, PrincetonGoogle Scholar
  19. Eberhard WG (2004) Why study spider sex: special traits of spiders facilitate studies of sperm competition and cryptic female choice. J Arachnol 32(3):545–556CrossRefGoogle Scholar
  20. Eberhard WG, Huber BA, Rodríguez SRL, Briceño RD, Salas L, Rodríguez V (1998) One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52(2):415–431CrossRefGoogle Scholar
  21. Elgar MA (1998) Sperm competition and sexual selection in spiders and other arachnids. In: Birkhead TR, Moller AP (eds) Sperm competition and sexual selection. Academic Press, California, pp 307–332CrossRefGoogle Scholar
  22. Elias DO, Andrade MCB, Kasumovic MM (2011) Dynamic population structure and the evolution of spider mating systems. In: Casas J (ed) Advances in insect physiology. Academic Press, Burlington, pp 65–114Google Scholar
  23. Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223CrossRefGoogle Scholar
  24. Fernández-Montraveta C, Cuadrado M (2003) Timing and patterns of mating in a free-ranging population of Lycosa tarantula (Araneae, Lycosidae) from central Spain. Can J Zool 81:552–555CrossRefGoogle Scholar
  25. Fernández-Montraveta C, Ortega J (1990) Some aspects of the reproductive behavior of Lycosa tarantula fasciiventris (Araneae, Lycosidae). J Arachnol 18:257–262Google Scholar
  26. Fernández-Montraveta C, González JM, Cuadrado M (2014) Male vulnerability explains the occurrence of sexual cannibalism in a moderately sexually dimorphic wolf spider. Behav Process 105:53–59CrossRefGoogle Scholar
  27. Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, New York, p 419Google Scholar
  28. Foster SA, Endler JA (1999) Introductions and aims. In: Foster SA, Endler JA (eds) Geographic variation in behavior. Perspectives on evolutionary mechanisms. Oxford University Press, New YorkGoogle Scholar
  29. González M (2015) Aspectos reproductivos de Aglaoctenus lagotis: estudio interpoblacional de una araña lobo sedentaria de gran variabilidad fenotípica. PhD thesis, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina, p 254Google Scholar
  30. González M, Costa FG (2008) Persistence of sexual reluctance in mated females and the importance of regular copulation in a wolf spider. Ethol Ecol Evol 20:115–124CrossRefGoogle Scholar
  31. González M, Peretti AV, Viera C, Costa FG (2013) Differences in sexual behavior of two distant populations of the funnel-web wolf spider Aglaoctenus lagotis. J Ethol 31:175–184CrossRefGoogle Scholar
  32. González M, Costa FG, Peretti AV (2014) Strong phenological differences between two populations of a Neotropical funnel-web wolf spider. J Nat Hist 48:2183–2197CrossRefGoogle Scholar
  33. González M, Costa FG, Peretti AV (2015a) Funnel-web construction and estimated immune costs in Aglaoctenus lagotis (Araneae: Lycosidae). J Arachnol 43:158–167CrossRefGoogle Scholar
  34. González M, Peretti AV, Costa FG (2015b) Reproductive isolation between two populations of Aglaoctenus lagotis, a funnel-web wolf spider. Biol J Linn Soc 114:646–658CrossRefGoogle Scholar
  35. Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79CrossRefGoogle Scholar
  36. Gowaty PA (2013) Adaptively flexible polyandry. Anim Behav 86:877–884CrossRefGoogle Scholar
  37. Hammer O, Harper DAT, Ryan PD (2003) Past palaeontological, version 1.18. Copyright Hammer and Harper. http://folk.uio.no/ohammer/past. Accessed 15 Mar 2009
  38. Hanlon RT, Forsythe JW (2008) Sexual cannibalism by Octopus cyanea on a Pacific coral reef. Mar Freshw Behav Phy 41(1):19–28CrossRefGoogle Scholar
  39. Herberstein ME, Schneider JM, Elgar MA (2002) Costs of courtship and mating in a sexually cannibalistic orb-web spider: female mating strategies and their consequences for males. Behav Ecol Sociob 51:440–446CrossRefGoogle Scholar
  40. Hosken DJ, Stockley P, Tregenza T, Wedell N (2009) Monogamy and the battle of the sexes. Annu Rev Entomol 54:361–378CrossRefGoogle Scholar
  41. Huber BA (2005) Sexual selection research on spiders: progress and biases. Biol Rev 80:363–385CrossRefGoogle Scholar
  42. Ishikawa M, Mori S, Nagata Y (2006) Intraspecific differences in patterns of courtship behaviours between the Pacific Ocean and Japan Sea forms of the three-spined stickleback Gasterosteus aculeatus. J Fish Biol 69:938–944CrossRefGoogle Scholar
  43. Jiao X, Guo L, Chen Z, Wu J, Chen J, Liu F, Li D (2011) Experimental evidence for female-driven monandry in the wolf spider, Pardosa astrigera. Behav Ecol Sociobiol 65:2117–2123CrossRefGoogle Scholar
  44. Kuntner M, Kralj-Fiser S, Schneider JM, Li D (2009) Mate plugging via genital mutilation in nephilid spiders: an evolutionary hypothesis. J Zool 277:257–266CrossRefGoogle Scholar
  45. Macías-Ordóñez R, Machado G, Macedo RH (2014) Macroecology of sexual selection: large-scale influence of climate on sexually selected traits. In: Macedo RH, Machado G (eds) Sexual selection: perspectives and models from the Neotropics. Academic Press, USA, pp 1–32Google Scholar
  46. Maklakov AA, Lubin Y (2006) Indirect genetic benefits of polyandry in a spider with direct costs of mating. Behav Ecol Sociobiol 61:31–38CrossRefGoogle Scholar
  47. Michalik P, Aisenberg A, Postiglioni R, Lipke E (2013) Spermatozoa and spermiogenesis of the wolf spider Schizocosa malitiosa (Lycosidae, Araneae) and its functional and phylogenetic implications. Zoomorphology 132:11–21CrossRefGoogle Scholar
  48. Miller GL, Stratton GE, Miller PR, Hebets E (1998) Geographical variation in male courtship behaviour and sexual isolation in wolf spiders of the genus Schizocosa. Anim Behav 56:937–951CrossRefGoogle Scholar
  49. Moya-Laraño J, Pascual J, Wise DH (2003) Mating patterns in late-maturing female Mediterranean tarantulas may reflect the costs and benefits of sexual cannibalism. Anim Behav 66:469–476CrossRefGoogle Scholar
  50. Nakata K (2016) Female genital mutilation and monandry in an orb-web spider. Biol Lett 12:20150912.  https://doi.org/10.1098/rsbl.2015.0912 CrossRefGoogle Scholar
  51. Norton S, Uetz GW (2005) Mating frequency in Schizocosa ocreata (Hentz) wolf spiders: evidence for a mating system with female monandry and male polygyny. J Arachnol 33:16–24CrossRefGoogle Scholar
  52. Olivero PA, Mattoni CI, Peretti AV (2017) Differences in mating behavior between two allopatric populations of a Neotropical scorpion. Zoology 123:71–78CrossRefGoogle Scholar
  53. Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Evol Syst 25:547–572CrossRefGoogle Scholar
  54. Papke MD, Riechert SE, Schulz S (2001) An airborne female pheromone associated with male attraction and courtship in a desert spider. Anim Behav 61:877–886CrossRefGoogle Scholar
  55. Peretti AV, Aisenberg A (2015) Cryptic female choice in arthropods: patterns, mechanisms and prospects. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar
  56. Pérez-Miles F, Postiglioni R, Montes-de-Oca L, Baruffaldi L, Costa FG (2007) Mating system in the tarantula spider Eupalaestrus weijenberghi (Thorell, 1894): evidences of monandry and polygyny. Zoology 110:253–260CrossRefGoogle Scholar
  57. Persons MH, Uetz GW (2005) Sexual cannibalism and mate choice decisions in wolf spiders: influence of male size and secondary sexual characters. Anim Behav 69:83–94CrossRefGoogle Scholar
  58. Piacentini L (2011) Three new species and new records in the wolf spider subfamily Sosippinae from Argentina (Araneae: Lycosidae). Zootaxa 3018:27–49CrossRefGoogle Scholar
  59. Reynolds JD (1996) Animal breeding systems. Tree 11(2):68–72Google Scholar
  60. Riechert SE, Johns PM (2003) Do female spiders select heavier males for the genes for behavioral aggressiveness they offer their offspring? Evolution 57(6):1367–1373CrossRefGoogle Scholar
  61. Rypstra AL, Wieg C, Walker SE, Persons MH (2003) Mutual mate assessment in wolf spiders: differences in the cues used by males and females. Ethology 109:315–325CrossRefGoogle Scholar
  62. Santos AJ, Brescovit AD (2001) A revision of the South American spider genus Aglaoctenus Tullgren, 1905 (Araneae, Lycosidae, Sosippinae). Andrias 15:75–90Google Scholar
  63. Schafer MA, Uhl G (2004) Sequential mate encounters: female but not male body size influences female remating behavior. Behav Ecol 12(2):461–466CrossRefGoogle Scholar
  64. Shine R, Fitzgerald M (1995) Variation in mating systems and sexual size dimorphism between populations of the Australian python Morelia spilota (Serpentes: Pythonidae). Oecologia 103:490–498CrossRefGoogle Scholar
  65. Simmons LW (2005) The evolution of polyandry: sperm competition, sperm selection, and offspring viability. Annu Rev Ecol Evol Syst 36:125–146CrossRefGoogle Scholar
  66. Singer F, Riechert SE (1995) Mating system and mating success of the desert spider Agelenopsis aperta. Behav Ecol Sociobiol 36:313–322CrossRefGoogle Scholar
  67. Sordi S (1996) Ecologia de populaçoes da aranha Porrimosa lagotis (Lycosidae) nas reservas Mata de Santa Genebra, Campinas (SP) e Serra do Japi, Jundai (SP) PhD thesis, Universidade Estadual de Campinas, Sao Paulo, BrasilGoogle Scholar
  68. Stefani V, Del-Claro K, Silva LA, Guimaraes B, Tizo-Pedroso E (2011) Mating behavior and maternal care in the tropical savanna funnel-web spider Aglaoctenus lagotis Holmberg (Araneae: Lycosidae). J Nat Hist 45:1119–1129CrossRefGoogle Scholar
  69. Taylor ML, Price TAR, Wedell N (2014) Polyandry in nature: a global analysis. Home. Trends Ecol Evol 29(7):376–383CrossRefGoogle Scholar
  70. Uetz GW, Norton S (2007) Preference for male traits in female wolf spiders varies with the choice of available males, female age and reproductive state. Behav Ecol Sociobiol 61:631–641CrossRefGoogle Scholar

Copyright information

© Japan Ethological Society 2019

Authors and Affiliations

  • Macarena González
    • 1
    • 2
    • 3
    Email author
  • Fernando G. Costa
    • 3
  • Alfredo V. Peretti
    • 1
    • 2
  1. 1.Laboratorio de Biología Reproductiva, Cátedra de Diversidad Animal I, Facultad de Ciencias Exactas Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Instituto de Diversidad y Ecología Animal (IDEA)CórdobaArgentina
  3. 3.Departamento de Ecología y Biología EvolutivaInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay

Personalised recommendations