Journal of Ethology

, Volume 36, Issue 2, pp 107–116 | Cite as

Ethological description of a fixed action pattern in a kissing bug (Triatominae): vision, gustation, proboscis extension and drinking of water and guava

  • Oscar Páez-Rondón
  • Elis Aldana
  • Joseph Dickens
  • Fernando Otálora-LunaEmail author
Video Article


Triatomines (Heteroptera, Reduviidae) are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in America. These true bugs have traditionally been considered to be blood suckers, although some species have been catalogued as being entomophagous. By using their highly specialized mouthparts, these insects have evolved a stereotyped habit which includes lifting up the proboscis, piercing and sucking, when the occasion arises. Most triatomines bite their sleeping and unaware vertebrate or invertebrate hosts, but they can also search for other targets, guided, in part, by visual and chemical stimuli. In this study, we observed that triatomines apparently visually identify a drop of water in the distance, then taste it with their legs, upon which proboscis extension and sucking ensues. This invariant behavior or fixed action pattern, observed in several triatomine species (Rhodnius prolixus, Triatoma infestans and Panstrongylus geniculatus), was also elicited by a dummy drop of water and guava fruit. We discuss evolutionary and ethological aspects of this innate behavior. Digital video images related to this article are available at and


Proboscis-extension reflex Innate releasing mechanism Rostrum Behavioral sequence Intuition Kleptophagy 


  1. Aldana E, Otálora F, Abramson CI (2005) A new apparatus to study behavior of triatomines under laboratory conditions. Psychol Rep 96:825–832CrossRefGoogle Scholar
  2. Alves CL, Araujo RN, Gontijo NF, Pereira MH (2011) Importance and physiological effects of hemolymphagy in triatomines (Hemiptera: Reduviidae). J Med Entomol 48:372–381CrossRefGoogle Scholar
  3. Áñez N (1982) Studies on Trypanosoma rangeli Tejera, 1920. III. Direct transmission of Trypanosoma rangeli between triatomine bugs. Ann Trop Med Parasitol 76:641–647CrossRefGoogle Scholar
  4. Áñez N, Crisante G, Rojas A, Dávila D (2013) Brote de enfermedad de Chagas agudo de posible transmisión oral en Mérida, Venezuela. Bol Mal Salud Amb 53:1–11Google Scholar
  5. Bailly F, Longo G, Montevil M (2012) A 2-dimensional geometry for biological time. Prog Biophys Mol Biol 106:474–484CrossRefGoogle Scholar
  6. Bekoff M (2007) Pasiones animales y virtudes bestiales: la etología cognitiva como la ciencia unificadora para la comprensión de las vidas subjetivas, emocionales, empáticas y morales de los animales. REDVET Rev Electron Vet 1695:7504Google Scholar
  7. Bekoff M, Jamieson D (1990) Cognitive ethology and applied philosophy: the significance of an evolutionary biology of mind. Trends Ecol Evol 5:156–159CrossRefGoogle Scholar
  8. Castro M, Barrett TV, Santos WS, Abad-Franch F, Rafael JA (2010) Attraction of Chagas disease vectors (Triatominae) to artificial light sources in the canopy of primary Amazon rainforest. Mem Inst Oswaldo Cruz 105:1061–1064CrossRefGoogle Scholar
  9. Colacino C, Grehan JR (2003) Ostracismo alle frontiere della biologia evoluzionistica: il caso Léon Croizat. In: Mamone Capria M (ed) Scienza e Democrazia. Liguori, Napoli, pp 195–220. ISBN 88-207-3495-8Google Scholar
  10. Craig W (1918) Appetites and aversions as constituents of instincts. Sci Am 85:291. CrossRefGoogle Scholar
  11. Crist E (1998) The ethological constitution of animals as natural objects: the technical writings of Konrad Lorenz and Nikolaas Tinbergen. Biol Philos 13:61–102CrossRefGoogle Scholar
  12. Croizat L (1962) Space, time, form: the biological synthesis. Published by the author, CaracasGoogle Scholar
  13. Darwin C (1983) El origen de las especies. del Serbal, BarcelonaGoogle Scholar
  14. Darwin C, Wallace A (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J Proc Linn Soc Lond Zool 3:45–62CrossRefGoogle Scholar
  15. Díaz-Albiter HM, Ferreira TN, Costa SG, Rivas GB, Gumiel M, Cavalcante DR, Pavan MG, Gonzalez MS, de Mello CB, Dillon VM, Bruno RV, Genta FA (2016) Everybody loves sugar: first report of plant feeding in triatomines. Parasites Vectors 9:114CrossRefGoogle Scholar
  16. Durán P, Siñani E, Depickère S (2016) On triatomines, cockroaches and haemolymphagy under laboratory conditions: new discoveries. Mem Inst Oswaldo Cruz 111:605–613CrossRefGoogle Scholar
  17. Edwards J (1962) A note on water uptake and gustatory discrimination in a predatory reduviid (Hemiptera). J Insect Physiol 8:113–115CrossRefGoogle Scholar
  18. Eibl-Eibesfeldt I (1979) Etología: introducción al estudio comparado del comportamiento, 2nd edn. Omega, SpainGoogle Scholar
  19. Ferreira RA, Lazzari CR, Lorenzo MG, Pereira MH (2007) Do haematophagous bugs assess skin surface temperature to detect blood vessels? PLoS ONE 2(9):e932CrossRefGoogle Scholar
  20. Flores GB, Lazzari CR (1996) The role of the antennae in Triatoma infestans: orientation towards thermal sources. J Insect Physiol 42:433–440CrossRefGoogle Scholar
  21. Fresquet N, Lazzari CR (2011) Response to heat in Rhodnius prolixus: the role of the thermal background. J Insect Physiol 57:1446–1449CrossRefGoogle Scholar
  22. Friend WG, Smith JJB (1977) Factors affecting feeding by bloodsucking insects. Annu Rev Entomol 22:309–331CrossRefGoogle Scholar
  23. García Bacca JD (1985) Necesidad y azar: Parménides (s. V a.C.) - Mallarmé (s. XIX d.C.). Antrophos - Editorial del Hombre, BarcelonaGoogle Scholar
  24. Gould SJ (1982) Darwinism and the expansion of the evolutionary theory. Science 216:380–387CrossRefGoogle Scholar
  25. Gould SJ (1992) Roots: ontogeny and phylogeny-revisited and reunited. BioEssays 14:275–279CrossRefGoogle Scholar
  26. Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15CrossRefGoogle Scholar
  27. Grehan J (1984) Evolution by law: Croizat’s “orthogeny” and Darwin’s laws of growth. Tuatara 27:14–19Google Scholar
  28. Guerenstein PG, Lazzari CR (2009) Host-seeking: how triatomines acquire and make use of information to find blood. Acta Trop 110:148–158CrossRefGoogle Scholar
  29. Guerenstein PG, Núñez JA (1994) Feeding response of the haematophagous bugs Rhodnius prolixus and Triatoma infestans to saline solutions: a comparative study. J Insect Physiol 40:747–752CrossRefGoogle Scholar
  30. Hatfield LD, Ferreira J, Frazier JL (1983) Host selection and feeding behavior by the tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). Ann Entomol Soc Am 76:688–691CrossRefGoogle Scholar
  31. Heads M (2017) Biography and evolution in New Zealand. CRC, Boca RatónGoogle Scholar
  32. Humboldt A (1991) Viaje a las regiones equinocciales del nuevo continente (1799–1800). Monte Avila, CaracasGoogle Scholar
  33. Immelmann K (1983) Introduction to ethology, 2nd edn. Plenum, New YorkGoogle Scholar
  34. Kogon C (1941) Das Instinktive als philosophisches problem. Trilsch, DresdenGoogle Scholar
  35. Kusumaatmaja H, Vrancken RJ, Bastiaansen CWM, Yeomans JM (2008) Anisotropic drop morphologies on corrugated surfaces. arXiv preprint arXiv:0805.0063
  36. Labrousse C, Lazzari C, Fresquet N (2017) Developmental study of the proboscis extension response to heat in Rhodnius prolixus along the life cycle. J Insect Physiol 98:55–58CrossRefGoogle Scholar
  37. Lorenz K (1977) El comportamiento animal y humano, 1st edn. Plaza & Janes, BarcelonaGoogle Scholar
  38. Lorenz K (1981) The foundations of ethology. Springer, Heidelberg Berlin New YorkCrossRefGoogle Scholar
  39. Mendl M, Paul ES, Chittka L (2011) Animal behaviour: emotion in invertebrates? Curr Biol 21:R463–R465CrossRefGoogle Scholar
  40. Miller NCE (1953) Notes on the biology of the Reduviidae of Southern Rhodesia. Trans Zool Soc Lond 27:541–672CrossRefGoogle Scholar
  41. Ortiz MI, Molina J (2010) Preliminary evidence of Rhodnius prolixus (Hemiptera: Triatominae) attraction to human skin odour extracts. Acta Trop 113:174–179CrossRefGoogle Scholar
  42. Otálora-Luna F, Guerin P (2014) Amines from vertebrates guide triatomine bugs to resources. J Insect Physiol 71:52–60CrossRefGoogle Scholar
  43. Otálora-Luna F, Perret JL, Guerin PM (2004) Appetence behaviours of the triatomine bug Rhodnius prolixus on a servosphere in response to the host metabolites carbon dioxide and ammonia. J Comp Physiol A 190:847–854CrossRefGoogle Scholar
  44. Otálora-Luna F, Aldana E, Viloria A (2015a) Triatomines or humans: who are the invaders? Ludus Vitalis 43:223–230Google Scholar
  45. Otálora-Luna F, Pérez-Sánchez AJ, Sandoval C, Aldana E (2015b) Evolution of hematophagous habit in Triatominae (Heteroptera: Reduviidae). Rev Chil Hist Nat. CrossRefGoogle Scholar
  46. Otálora-Luna F, Aldana E, Viloria A (2017) Crítica a la teoría de la evolución pura: hacia la belleza estructural. Ludus Vitalis 25(47):167–185Google Scholar
  47. Pacheco-Tucuch FS, Ramirez-Sierra MJ, Gourbière S, Dumonteil E (2012) Public street lights increase house infestation by the Chagas disease vector Triatoma dimidiata. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Paul E, Mendl M (2016) If insects have phenomenal consciousness, could they suffer? Anim Sentience 1:16Google Scholar
  49. Pontes G, Minoli S, Insaurralde IO, Brito Sanchez MG, Barrozo RB (2014) Bitter stimuli modulate the feeding decision of a blood-sucking insect via two sensory inputs. J Exp Biol 217:3708–3717CrossRefGoogle Scholar
  50. Raad H, Ferveur JF, Ledger N, Capovilla M, Robichon A (2016) Functional gustatory role of chemoreceptors in Drosophila wings. Cell Rep 15:1442–1454CrossRefGoogle Scholar
  51. Reisenman CE, Lazzari C (2006) Spectral sensitivity of the photonegative reaction of the blood-sucking bug Triatoma infestans (Heteroptera: Reduviidae). J Comp Physiol A 192:39–44CrossRefGoogle Scholar
  52. Roeder K (1998) Nerve cells and insect behavior, 2nd edn. Harvard University Press, CambridgeGoogle Scholar
  53. Sandoval CM, Medone P, Nieves EE, Jaimes DA, Ortiz N, Rabinovich JE (2013) Demographic fitness of Belminus ferroae (Hemiptera: Triatominae) on three different hosts under laboratory conditions. Mem Inst Oswaldo Cruz 108:854–864CrossRefGoogle Scholar
  54. Sandoval CM, Nieves EE, Gutiérrez R, Jaimes DA, Ortiz N, Otálora-Luna F, Aldana EJ (2015) Morphometric analysis of the host effect on phenotypical variation of Belminus ferroae (Hemiptera: Triatominae). Psyche. CrossRefGoogle Scholar
  55. Schaub GA, Böker CA, Jensen C, Reduth D (1989) Cannibalism and coprophagy are modes of transmission of Blastocrithidia triatomae (Trypanosomatidae) between triatomines. J Eukaryot Microbiol 36:171–175Google Scholar
  56. Schmitz H, Trenner S, Hofmann MH, Bleckmann H (2000) The ability of Rhodnius prolixus (Hemiptera; Reduviidae) to approach a thermal source solely by its infrared radiation. J Insect Physiol 46:745–751CrossRefGoogle Scholar
  57. Semprebon C, Mistura G, Orlandini E, Bissacco G, Segato A, Yeomans JM (2009) Anisotropy of water droplets on single rectangular posts. Langmuir 25:5619–5625CrossRefGoogle Scholar
  58. Singh R (1997) Neurobiology of the gustatory systems of Drosophila and some terrestrial insects. Microsc Res Tech 39:547–563CrossRefGoogle Scholar
  59. Tiffin H (2016) Do insects feel pain? Anim Studies J 5:80–96Google Scholar
  60. Tinbergen N (1951) The study of instinct. Oxford University Press, New YorkGoogle Scholar
  61. Tinbergen N (1986) Naturalistas curiosos, 1st edn. Salvat, BarcelonaGoogle Scholar
  62. Tinbergen N (2006) El estudio del instinto, 1st edn. Siglo XXI, Cerro del AguaGoogle Scholar
  63. Vinauger C, Lallement H, Lazzari CR (2013) Learning and memory in Rhodnius prolixus: habituation and aversive operant conditioning of the proboscis extension response. J Exp Biol 216:892–900CrossRefGoogle Scholar
  64. Ward JP, Finlayson LH (1982) Behavioural responses of the haematophagous bug Triatoma infestans (Klug) (Hemiptera: Reduviidae) to visual stimuli. Bull Entomol Res 72:357–366CrossRefGoogle Scholar
  65. Wigglesworth V (1931) The physiology of excretion in a blood-sucking insect, Rhodnius prolixus (Hemiptera, Reduviidae). J Exp Biol 8:411–427Google Scholar
  66. Wigglesworth V, Gillett J (1934a) The function of antennae in Rhodnius prolixus (Hemiptera) and the mechanism of orientation to the host. J Exp Biol 11:120–139Google Scholar
  67. Wigglesworth V, Gillett J (1934b) The function of the antennae in Rhodnius prolixus: confirmatory experiments. J Exp Biol 11:408Google Scholar

Copyright information

© Japan Ethological Society and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unidad de Articulación Comunitaria, Centro Multidisciplinario de CienciasInstituto Venezolano de Investigaciones CientíficasMéridaBolivarian Republic of Venezuela
  2. 2.Laboratorio de Entomología “Herman Lent,” Departamento de Biología, Facultad de CienciasUniversidad de Los AndesMéridaBolivarian Republic of Venezuela
  3. 3.Department of BiologyUniversity of RichmondRichmondUSA
  4. 4.Laboratorio de Ecología Sensorial, Centro Multidisciplinario de CienciasInstituto Venezolano de Investigaciones CientíficasMéridaBolivarian Republic of Venezuela

Personalised recommendations