Advertisement

Journal of Ethology

, Volume 36, Issue 2, pp 191–197 | Cite as

The role of silk in courtship and chemical communication of the false widow spider, Steatoda grossa (Araneae: Theridiidae)

  • Catherine ScottEmail author
  • Chloe Gerak
  • Sean McCann
  • Gerhard Gries
Short Communication

Abstract

In spiders, sex pheromones are often associated with silk produced by females, and function in mate attraction, recognition, and evaluation. Silk-bound pheromones typically elicit courtship behaviour in web-building spiders. Here we (1) describe courtship interactions of Steatoda grossa males with virgin or mated females, and (2) show that silk and methanol extracts of silk produced by virgin females trigger courtship behaviour (silk production) by males, whereas silk of mated females does not. Our results indicate that (1) virgin females produce a silk-bound sex pheromone, (2) males discriminate between virgin and mated females based on silk cues, and (3) male silk likely functions in sexual communication.

Keywords

Courtship behaviour Mating Sex pheromone Web reduction Spider silk 

Notes

Acknowledgements

We thank Robb Bennett for confirming our identification of the spiders and two anonymous reviewers for constructive comments on the manuscript. The research was supported by a Natural Sciences and Engineering Research Council of Canada-Industrial Research Chair to G. G., with Scotts Canada as the industrial sponsor.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We followed the guidelines of the Canadian Council on Animal Care.

Supplementary material

10164_2017_539_MOESM1_ESM.mp4 (54.8 mb)
Supplementary material 1 (MP4 56131 kb)
10164_2017_539_MOESM2_ESM.mp4 (15.3 mb)
Supplementary material 2 (MP4 15637 kb)
10164_2017_539_MOESM3_ESM.mp4 (11.2 mb)
Supplementary material 3 (MP4 11419 kb)
10164_2017_539_MOESM4_ESM.mp4 (4.8 mb)
Supplementary material 4 (MP4 4892 kb)
10164_2017_539_MOESM5_ESM.mp4 (13.5 mb)
Supplementary material 5 (MP4 13846 kb)
10164_2017_539_MOESM6_ESM.mp4 (23.4 mb)
Supplementary material 6 (MP4 23934 kb)
10164_2017_539_MOESM7_ESM.mp4 (6.1 mb)
Supplementary material 7 (MP4 6234 kb)
10164_2017_539_MOESM8_ESM.mp4 (10.4 mb)
Supplementary material 8 (MP4 10640 kb)
10164_2017_539_MOESM9_ESM.mp4 (2.8 mb)
Supplementary material 9 (MP4 2884 kb)
10164_2017_539_MOESM10_ESM.mp4 (7.1 mb)
Supplementary material 10 (MP4 7242 kb)
10164_2017_539_MOESM11_ESM.mp4 (14.1 mb)
Supplementary material 11 (MP4 14483 kb)

Supplementary material 12 (MP4 111449 kb)

10164_2017_539_MOESM13_ESM.docx (62 kb)
Supplementary material 13 (DOCX 61 kb)

References

  1. Agnarsson I (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zool J Linn Soc 141:447–626CrossRefGoogle Scholar
  2. Anava A, Lubin Y (1993) Presence of gender cues in the web of a widow spider, Latrodectus revivensis, and a description of courtship behaviour. Bull Br Arachnol Soc 9:119–122Google Scholar
  3. Andrade MCB, Kasumovic MM (2005) Terminal investment strategies and male mate choice: extreme tests of Bateman. Integr Comp Biol 45:838–847CrossRefGoogle Scholar
  4. Andrade MC, MacLeod EC (2015) Potential for CFC in black widows (genus Latrodectus): mechanisms and social context. Cryptic female choice in arthropods. Springer, Berlin, pp 27–53CrossRefGoogle Scholar
  5. Arnedo MA, Coddington J, Agnarsson I, Gillespie RG (2004) From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. Mol Phylogenet Evol 31:225–245CrossRefGoogle Scholar
  6. Baruffaldi L (2016) Function and diversity of sex pheromones in representative species of the black widow spiders (genus Latrodectus, Araneae: Theridiidae). PhD thesis, University of Toronto, CanadaGoogle Scholar
  7. Baruffaldi L, Andrade MCB (2015) Contact pheromones mediate male preference in black widow spiders: avoidance of hungry sexual cannibals? Anim Behav 102:25–32CrossRefGoogle Scholar
  8. Berendonck B (2003) Reproductive strategies in Latrodectus revivensis (Araneae: Theridiidae): functional morphology and sexual cannibalism. PhD thesis, Heinrich–Heine Universität, Düsseldorf, GermanyGoogle Scholar
  9. Bryan S (2015) Invasive Australian redback spiders: investigating the feasibility of a biological control using female sex pheromones. MSc thesis, University of Otago, New ZealandGoogle Scholar
  10. Correa-Garhwal SM, Chaw RC, Clarke TH, Ayoub NA, Hayashi CY (2017) Silk gene expression of theridiid spiders: implications for male-specific silk use. Zoology 122:107–114CrossRefGoogle Scholar
  11. Craig CL (2003) Spiderwebs and silk: tracing evolution from molecules to genes to phenotypes. Oxford University Press, OxfordGoogle Scholar
  12. Gaskett AC (2007) Spider sex pheromones: emission, reception, structures, and functions. Biol Rev Camb Philos Soc 82:27–48CrossRefGoogle Scholar
  13. Gaskett AC, Herberstein ME, Downes BJ, Elgar MA (2004) Changes in male mate choice in a sexually cannibalistic orb-web spider (Araneae: Araeneidae). Behaviour 141:1197–1210CrossRefGoogle Scholar
  14. Gwinner-Hanke H (1970) Zum Verhalten zweier stridulierender Spinnen Steatoda bipunctata Linné und Teutana grossa Koch (Theridiidae, Araneae), unter besonderer Berücksichtigung des Fortpflanzungsverhaltens. Ethology 27:649–678Google Scholar
  15. Jerhot E, Stoltz JA, Andrade MCB, Schulz S (2010) Acylated serine derivatives: a unique class of arthropod pheromones of the Australian redback spider, Latrodectus hasselti. Angew Chem Int Ed 49:2037–2040CrossRefGoogle Scholar
  16. Jiao X, Guo L, Chen Z, Wu J, Chen J, Liu F, Li D (2011) Experimental evidence for female-driven monandry in the wolf spider, Pardosa astrigera. Behav Ecol Sociobiol 65:2117–2123CrossRefGoogle Scholar
  17. Kasumovic MM, Andrade MCB (2004) Discrimination of airborne pheromones by mate–searching male western black widow spiders (Latrodectus hesperus): species–and population–specific responses. Can J Zool 82:1027–1034CrossRefGoogle Scholar
  18. Knoflach B (2004) Diversity in the copulatory behaviour of comb-footed spiders (Araneae, Theridiidae). Denisia 12:161–256Google Scholar
  19. Levi HW (1957) The spider genera Cristulina and Steatoda in North America, Central America, and the West Indies (Araneae, Theridiidae). Bull Mus Comp Zool 117:367–424Google Scholar
  20. MacLeod EC, Andrade MCB (2014) Strong, convergent male mate choice along two preference axes in field populations of black widow spiders. Anim Behav 89:163–169CrossRefGoogle Scholar
  21. Perampaladas K, Stoltz JA, Andrade MCB (2008) Mated redback spider females readvertise receptivity months after mating. Ethology 114:589–598CrossRefGoogle Scholar
  22. Riechert SE, Singer FD (1995) Investigation of potential male mate choice in a monogamous spider. Anim Behav 49:715–723CrossRefGoogle Scholar
  23. Ross K, Smith RL (1979) Aspects of the courtship behavior of the black widow spider, Latrodectus hesperus (Araneae: Theridiidae), with evidence for the existence of a contact sex pheromone. J Arachnol 7:69–77Google Scholar
  24. Schulz S (2004) Semiochemistry of spiders. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 110–150CrossRefGoogle Scholar
  25. Schulz S (2013) Spider pheromones—a structural perspective. J Chem Ecol 39:1–14CrossRefGoogle Scholar
  26. Schulz S, Toft S (1993) Identification of a sex pheromone from a spider. Science 260:1635–1637CrossRefGoogle Scholar
  27. Scott C, Vibert S, Gries G (2012) Evidence that web reduction by western black widow males functions in sexual communication. Can Entomol 144:672–678CrossRefGoogle Scholar
  28. Scott C, McCann S, Gries R, Khaskin G, Gries G (2015a) N-3-Methylbutanoyl-O-methylpropanoyl-l-serine methyl ester–pheromone component of western black widow females. J Chem Ecol 41:465–472CrossRefGoogle Scholar
  29. Scott C, Kirk D, McCann S, Gries G (2015b) Web reduction by courting male black widows renders pheromone-emitting females’ webs less attractive to rival males. Anim Behav 107:71–78CrossRefGoogle Scholar
  30. Snow LSE, Andrade MCB (2005) Multiple sperm storage organs facilitate female control of paternity. Proc R Soc B 272:1139–1144CrossRefGoogle Scholar
  31. Stoltz JA, McNeil JN, Andrade MCB (2007) Males assess chemical signals to discriminate just–mated females from virgins in redback spiders. Anim Behav 74:1669–1674CrossRefGoogle Scholar
  32. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL: http://www.R-project.org. Accessed 1 Mar 2017
  33. Thomas ML (2011) Detection of female mating status using chemical signals and cues. Biol Rev 86:1–13CrossRefGoogle Scholar
  34. Trabalon M (2013) Chemical communication and contact cuticular compounds in spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 125–140CrossRefGoogle Scholar
  35. Trabalon M, Niogret J, Legrand-Frossi C (2005) Effect of 20-hydroxyecdysone on cannibalism, sexual behavior, and contact sex pheromone in the solitary female spider, Tegenaria atrica. Gen Comp Endocrinol 144:60–66CrossRefGoogle Scholar
  36. Uhl G (2013) Spider olfaction: attracting, detecting, luring and avoiding. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 141–157CrossRefGoogle Scholar
  37. Uhl G, Elias D (2011) Communication. In: Herberstein M (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 127–189CrossRefGoogle Scholar
  38. Watson PJ (1986) Transmission of a female sex pheromone thwarted by males in the spider Linyphia litigiosa (Linyphiidae). Science 233:219–222CrossRefGoogle Scholar
  39. Wyatt T (2014) Pheromones and animal behavior, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Japan Ethological Society and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations