Advertisement

Journal of Ethology

, Volume 34, Issue 2, pp 183–190 | Cite as

Prey capture behavior in three Neotropical armored harvestmen (Arachnida, Opiliones)

  • Thaiany M. Costa
  • Norton F. S. Silva
  • Rodrigo H. WillemartEmail author
Article

Abstract

Acquiring food requires success in all the distinct phases of foraging, among which are detecting, capturing and handling prey. We have looked at prey detection, capturing and handling in three species of armored harvestmen differing in leg length and pedipalp morphology: Discocyrtus pectinifemur, Heteromitobates discolor and Gryne perlata. We recorded males and females in captivity capturing 0.5- to 0.7-mm-long immature crickets without legs III and provide the first detailed description of prey capture in harvestmen of the suborder Laniatores. We have shown that these three species can detect live prey without touching it but only at close range (<1 cm). The success at the strike phase was: 27.2 % for D. pectinifemur, 50 % for G. perlata and 72.7 % for H. discolor. Combining the probability of detection without contact with that of successful capturing of the two-legged cricket, the success rate of G. perlata, D. pectinifemur and H. discolor were, respectively, 2, 21 and 32 %. Only one cricket escaped from within the pedipalps of the harvestmen (G. perlata, smooth pedipalps). The long-legged H. discolor, which forage in open areas, had a higher success and, after detection, took less time to attack crickets in open areas. Compared to other arachnids, prey detection happens at close range and capture success in Laniatores is low. However, omnivory probably minimizes these limitations in capturing live prey.

Keywords

Detection Foraging Handling Prey capture Gonyleptidae Cosmetidae 

Notes

Acknowledgments

We are grateful to J. Segovia, B. Taques and N. Fernandes for helping collecting the animals, the staff of the “Parque Estadual Serra do Mar—Picinguaba” (mainly Eliane, Caroline and Lucia) and the members of the LESCA Lab, J.M. Dias, J. Segovia, N. Fernandes, G.F. Pagoti, G.P. Murayama and G. Gainett for revising the manuscript. Two anonymous reviewers also greatly contributed to the manuscript. A.C. Machado greatly helped maintaining the animals in the laboratory. This study was supported by FAPESP to R.H.W., CNPq to T.M.C. and CAPES to N.F.S.S.

References

  1. Acosta LE, Machado G (2007) Diet and Foraging. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, pp 309–338Google Scholar
  2. Andrade R, Gnaspini P (2002) Feeding in Maxchernes iporangae (Pseudoscorpiones, Chernetidae) in captivity. J Arachnol 30:613–617CrossRefGoogle Scholar
  3. Balme G, Hunter L, Slotow R (2007) Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Anim Behav 71:589–598CrossRefGoogle Scholar
  4. Barth FG (2002) A spider’s world: senses and behavior. Springer, BerlinCrossRefGoogle Scholar
  5. Bartos M, Szczepko K (2012) Development of prey-specific predatory behavior in a jumping spider (Araneae: Salticidae). J Arachnol 40:228–233CrossRefGoogle Scholar
  6. Bothma J, Van Rooyen N, Le Riche E (1997) Multivariate analysis of the hunting tactics of Kalahari leopards. Koedoe 40:41–56CrossRefGoogle Scholar
  7. Bourass K, Léger JF, Zaime A, Qninba A, Rguibi H, El Agbani MA, Benhoussa A, Hingrat Y (2012) Observations on the diet of the North African houbara bustard during the non-breeding season. J Arid Environ 82:53–59CrossRefGoogle Scholar
  8. Brownell P (2001) Sensory ecology and orientational behaviors. In: Brownell P, Polis G (eds) Scorpion biology and research. Oxford University Press, Oxford, pp 159–183Google Scholar
  9. Brownell P, Farley RD (1979) Prey-localizing behaviour of the nocturnal desert scorpion, Paruroctonus mesaensis: orientation to substrate vibrations. Anim Behav 27:185–193CrossRefGoogle Scholar
  10. Cooper WE (1995) Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim Behav 50:973–985CrossRefGoogle Scholar
  11. Costa TM, Willemart RH (2013) First experimental evidence that a harvestman (Arachnida: Opiliones) detects odors of non-rotten dead prey by olfaction. Zoologia 30:359–361CrossRefGoogle Scholar
  12. Dias BC, Willemart RH (2013) The effectiveness of post-contact defenses in a prey with no pre-contact detection. Zoology 116:168–174CrossRefPubMedGoogle Scholar
  13. Dor A, Calme S, Henaut Y (2011) Predatory interactions between Centruroides scorpions and the tarantula Brachypelma vagans. J Arachnol 39:201–204CrossRefGoogle Scholar
  14. Dunn SJ (2004) Foraging and prey handling behavior of the generalist Thamnophis hammondii offered various prey types. Bios 75:58–64CrossRefGoogle Scholar
  15. Ferreira RL, Silva WC, Vieira VC, Silva MS (2011) Aspects of the behavior and reproduction of Mastigoproctus brasilianus Koch, 1843, (Arachnida: Uropygi: Telyphonidae). Rev Etol 10:3–11Google Scholar
  16. Foelix R (2013) Biology of spiders. Oxford University Press, New YorkGoogle Scholar
  17. Gnaspini P (1996) Population ecology of Goniosoma spelaeum, a cavernicolous harvestman from southeastern Brazil (Arachnida: Opiliones: Gonyleptidae). J Zool 239:417–435CrossRefGoogle Scholar
  18. Hashimoto K, Hayashi F (2014) Cantharidin world in nature: a concealed arthropod assemblage with interactions via the terpenoid cantharidin. Entomol Sci 17:388–395CrossRefGoogle Scholar
  19. Kaltsas D, Stathi I, Mylonas M (2008) The foraging activity of Mesobuthus gibbosus (Scorpiones: Buthidae) in central and south Aegean archipelago. J Nat Hist 42:513–527CrossRefGoogle Scholar
  20. Krapf D (1986) Contact chemoreception of prey in hunting scorpions (Arachnida: Scorpiones). Zool Anz 217:119–129Google Scholar
  21. Kupczik K, Stynder DD (2012) Tooth root morphology as an indicator for dietary specialization in carnivores (Mammalia: Carnivora). Biol J Linn Soc 105:456–471CrossRefGoogle Scholar
  22. Lanszki J, Heltai M, Szabó L (2006) Feeding habits and trophic niche overlap between sympatric golden jackal (Canis aureus) and red fox (Vulpes vulpes) in the Pannonian ecoregion (Hungary). Can J Zool 84:1647–1656CrossRefGoogle Scholar
  23. Machado G, Raimundo RLG, Oliveira PS (2000) Daily activity schedule, gregariousness, and defensive behaviour in the Neotropical harvestman Goniosoma longipes (Opiliones: Gonyleptidae). J Nat Hist 34:587–596CrossRefGoogle Scholar
  24. Macías-Ordóñez R (1997) The mating system of Leiobunum vittatum Say, 1821 (Arachnida: Opiliones: Palpatores): resource defense polygyny in the striped harvestman. PhD thesis, Lehigh University, BethlehemGoogle Scholar
  25. Martinoli A, Preatoni DG, Chiarenzi B, Wauters LA, Tosi G (2001) Diet of stoats (Mustela erminea) in an Alpine habitat: the importance of fruit consumption in summer. Acta Oecol 22:45–53CrossRefGoogle Scholar
  26. Meyer-Rochow VB, Liddle AL (1988) Structure and function of the eyes of two species of opilionid from New Zealand glow-worm caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicola: Laniatores). Proc R Soc Lond B 233:293–319CrossRefGoogle Scholar
  27. Phillipson J (1960) A contribution to the feeding biology of Mitopus morio (Phalangida). J Anim Ecol 29:35–43CrossRefGoogle Scholar
  28. Punzo F (1998) The Biology of Camel-spiders (Arachnida, Solifugae). Kluwer, BostonCrossRefGoogle Scholar
  29. Santer RD, Hebets EA (2009) Prey capture by the whip spider Phrynus marginemaulatus CL Koch. J Arachnol 37:109–112CrossRefGoogle Scholar
  30. Santos FH, Gnaspini P (2002) Notes on the foraging behavior of the Brazilian cave harvestman Goniosoma spelaeum (Opiliones, Gonyleptidae). J Arachnol 30:177–180CrossRefGoogle Scholar
  31. Sharma P, Giribet G (2011) The evolutionary and biogeographic history of the armoured harvestmen—Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebr Syst 25:106–142CrossRefGoogle Scholar
  32. Silva NFS, Willemart RH (2015) Foraging, oviposition sites and notes on the natural history of the harvestman Heteromitobates discolor (Opiliones, Gonyleptidae). Biota Neotrop 15:1–5Google Scholar
  33. Slansky F, Rodriguez JG (1987) Nutritional ecology of insects, mites, spiders, and related invertebrates. Wiley, New YorkGoogle Scholar
  34. Souza ES, Willemart RH (2011) Harvest-ironman: heavy armature, and not its defensive secretions, protects a harvestman against a spider. Anim Behav 81:127–133CrossRefGoogle Scholar
  35. Taylor LA, Maier EB, Byrne KJ, Amin Z, Morehouse NI (2014) Colour use by tiny predators: jumping spiders show colour biases during foraging. Anim Behav 90:149–157CrossRefGoogle Scholar
  36. Therrien F (2005) Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. J Zool 267:249–270CrossRefGoogle Scholar
  37. Vincent SE, Shine R, Brown GP (2005) Does foraging mode influence sensory modalities for prey detection in male and female filesnakes, Acrochordus arafurae? Anim Behav 70:715–721CrossRefGoogle Scholar
  38. Wall M, Shine R (2008) The relationship between foraging ecology and lizard chemoreception: can a snake analogue (Burton’s legless lizard, Lialis burtonis) detect prey scent? Ethology 115:264–272CrossRefGoogle Scholar
  39. Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics. Apollo, StenstrupGoogle Scholar
  40. Willemart RH, Chelini MC (2007) Experimental demonstration of close-range olfaction and contact chemoreception in the Brazilian harvestman Iporangaia pustulosa. Entomol Exp Appl 123:73–79CrossRefGoogle Scholar
  41. Willemart RH, Farine JP, Gnaspini P (2009) Sensory biology of Phalangida harvestmen (Arachnida, Opiliones): a review, with new morphological data on 18 species. Acta Zool 90:209–227CrossRefGoogle Scholar
  42. Willemart RH, Santer RD, Spence AJ, Hebets EA (2011) A sticky situation: solifugids (Arachnida, Solifugae) use adhesive organs on their pedipalps for prey capture. J Ethol 29:177–180CrossRefGoogle Scholar
  43. Wolff OJ, Schönhofer AL, Schaber CF, Gorb SN (2014) Gluing the ‘unwettable’: soil-dwelling harvestmen use viscoelastic fluids for capturing springtails. J Exp Biol 217:3535–3544CrossRefPubMedGoogle Scholar
  44. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Japan Ethological Society and Springer Japan 2016

Authors and Affiliations

  • Thaiany M. Costa
    • 1
    • 3
  • Norton F. S. Silva
    • 1
    • 2
  • Rodrigo H. Willemart
    • 1
    • 2
    • 3
    Email author
  1. 1.Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil
  2. 2.Programa de Pós-Graduação em Ecologia e EvoluçãoUniversidade Federal de São PauloDiademaBrazil
  3. 3.Programa de Pós-Graduação em Zoologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil

Personalised recommendations