Journal of Ethology

, Volume 34, Issue 1, pp 53–58 | Cite as

Diel locomotor activity and shelter use in the Patagonian catfish Hatcheria macraei under experimental conditions

  • Juan Pablo BarrigaEmail author
  • Nicolás Andrés Espinós
  • Walter Damián Ceferino Torres
  • Miguel Ángel Battini


Diel locomotor activity and shelter use was experimentally evaluated in Hatcheria macraei under three different light regimens: natural and inverted photoperiods, and during constant darkness. The results demonstrate clear nocturnal activity and highlight the negative phototactic behaviour of H. macraei, proving that light is the external factor that triggers the seeking of shelter and the subsequent hiding action. Locomotor activity was maximal in darkness, intermediate at dawn and dusk, and minimal (maximum shelter use) in full light. During free-running experiments (i.e. constant darkness) H. macraei continued to exhibit the same diel pattern of resting (or hiding) and swimming as under natural light conditions. Nocturnal activity and negative phototactic behaviour appear to be important mechanisms which have enabled H. macraei to withstand the effects of salmonid introduction in lotic environments where other native fishes have suffered negative effects.


Circadian rhythm Artificial photoperiod Hiding behaviour Refuge Swimming activity 



We thank Dirección de Pesca Continental of Río Negro Province for permission to collect native fishes. This study was partially funded by Agencia Nacional de Promoción Científica y Tecnológica, Argentina (ANPCyT, PICT 2010 No. 0262 and PICT 2013 No. 1387) and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET, PIP No. 11220120100063CO). All handling, care and experimental procedures used in this research complied with the animal welfare laws stated by the Government of Argentina (Law n° 14346).


  1. Aigo J, Cussac V, Peris S, Ortubay S, Gómez S, López H, Gross M, Barriga J, Battini M (2008) Distribution of introduced and native fish in Patagonia (Argentina): patterns and changes in fish assemblages. Rev Fish Biol Fisher 18:387–408CrossRefGoogle Scholar
  2. Alarcón PAE, Macchi PJ, Trejo A, Alonso MF (2012) Diet of the Neotropical cormorant (Phalacrocorax brasilianus) in a Patagonian freshwater environment invaded by exotic fish. Waterbirds 35:149–153CrossRefGoogle Scholar
  3. Arratia G, Menu-Marque S (1981) Revision of the freshwater catfishes of the genus Hatcheria (Siluriformes, Trichomycteridae) with commentaries on ecology and biogeography. Zool Anz 207:88–111Google Scholar
  4. Baigún C, Ferriz RA (2003) Distribution patterns of native freshwater fish in Patagonia (Argentina). Org Divers Evol 3:151–153CrossRefGoogle Scholar
  5. Barriga JP, Battini MA (2009) Ecological significances of ontogenetic shifts in the stream-dwelling catfish, Hatcheria macraei (Siluriformes, Trichomycteridae), in a Patagonian river. Ecol Freshw Fish 18:395–405CrossRefGoogle Scholar
  6. Barriga JP, Espinós NA, Chiarello-Sosa JM, Battini MA (2013) The importance of substrate size and interstitial space in the microhabitat selection by the stream-dwelling catfish Hatcheria macraei (Actinopterygii, Trichomycteridae). Hydrobiologia 705:191–206CrossRefGoogle Scholar
  7. Barriga JP, Chiarello-Sosa JM, Juncos R, Battini MA (2015) Photo-identification and the effects of tagging on the Patagonian catfish Hatcheria macraei. Environ Biol Fish 98:1163–1171CrossRefGoogle Scholar
  8. Borcherding J (2006) Prey or predator: piscivorous 0 + perch (Perca fluviatilis) in the trade-off between food and shelter. Environ Biol Fish 77:87–96CrossRefGoogle Scholar
  9. Carvalho MS, Zuanon J, Ferreira EJG (2014) Diving in the sand: the natural history of Pygidianops amphioxus (Siluriformes: Trichomycteridae), a miniature catfish of Central Amazonian streams in Brazil. Environ Biol Fish 97:59–68CrossRefGoogle Scholar
  10. Chen W, Naruse M, Tabata M (2002) Circadian rhythms and individual variability of self-feeding activity in groups of Oncorhynchus mykiss (Walbaun). Aquac Res 33:491–500CrossRefGoogle Scholar
  11. Girard CF (1855) Contributions to the fauna of Chile. Report to Lieut. James M. Gilliss, U. S. N., upon the fishes collected by the U. S. Naval Astronomical Expedition to the southern hemisphere during the years 1849-50-51-52, WashingtonGoogle Scholar
  12. Glova G, Sagar P, Naslund I (1992) Interaction for food and space between populations of Galaxias vulgaris Stokell and juvenile Salmo trutta L. in a New Zealand stream. J Fish Biol 41:909–925CrossRefGoogle Scholar
  13. Habit E, Piedra P, Ruzzante DE, Walde SJ, Belk MC, Cussac VE, Gonzalez J, Colin N (2010) Changes in the distribution of native fishes in response to introduced species and other anthropogenic effects. Global Ecol Biogeogr 19:697–710Google Scholar
  14. Kasai M, Yamamoto T, Kiyohara S (2009) Circadian locomotor activity in Japanese sea catfish Plotosus lineatus. Fish Sci 75:81–89CrossRefGoogle Scholar
  15. Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annu Rev Ecol Syst 34:153–181CrossRefGoogle Scholar
  16. Lima SL, Dill M (1990) Behavioural decisions made under the risk of predation. Can J Zool 68:619–640CrossRefGoogle Scholar
  17. Mazzoni R, Moraes M, Rezende CF, Iglesias-Rios R (2010) Diet and feeding daily rhythm of Pimelodella lateristriga (Osteichthyes, Siluriformes) in a coastal stream from Serra do Mar—RJ. Braz J Biol 70:1123–1129CrossRefPubMedGoogle Scholar
  18. Menni RC (2004) Peces y ambientes en la Argentina continental. Monografías del Museo Argentino de Ciencias. Naturales, Buenos AiresGoogle Scholar
  19. Pascual MA, Macchi PJ, Urbansky J, Marcos F, Riva Rossi C, Novara M, Dell’Arciprete P (2002) Evaluating potential effects of exotic freshwater fish from incomplete species presence-absence data. Biol Invasions 4:101–113CrossRefGoogle Scholar
  20. Pascual MA, Cussac V, Dyer B, Soto D, Vigliano P, Ortubay S, Macchi PJ (2007) Freshwater fishes of Patagonia in the 21st century after a hundred years of human settlement, species introductions, and environmental change. Aquat Ecosyst Health 10:1–16CrossRefGoogle Scholar
  21. Pascual MA, Lancelotti J, Ernst B, Ciancio J, Aedo E, García-Asorey M (2009) Scale, connectivity, and incentives in the introduction and management of non-native species: the case of exotic salmonids in Patagonia. Front Ecol Environ 7:533–540CrossRefGoogle Scholar
  22. Ramteke AK, Poddar P, Pati AK (2009) Circadian rhythms of locomotor activity in Indian walking catfish, Clarias batrachus. Biol Rhythm Res 40:201–209CrossRefGoogle Scholar
  23. Reebs SG (2002) Plasticity of diel and circadian activity rhythms in fishes. Rev Fish Biol Fisher 12:349–371CrossRefGoogle Scholar
  24. Ringuelet RA, Aramburu RH, Alonso A (1967) Los peces argentinos de agua dulce. Provincia de Buenos Aires, Comisión de Investigación Científicas, Buenos AiresGoogle Scholar
  25. Schulz UH, Leuchtenberger C (2006) Activity patterns of South American silver catfish (Rhamdia quelen). Braz J Biol 66:565–574CrossRefPubMedGoogle Scholar
  26. Unmack PJ, Habit EM, Johnson JB (2009) New records of Hatcheria macraei (Siluriformes, Trichomycteridae) from Chilean province. Gayana 73:102–110Google Scholar
  27. Unmack PJ, Barriga JP, Battini MA, Habit EM, Johnson JB (2012) Phylogeography of the catfish Hatcheria macraei reveals a negligible role of drainage divides in structuring populations. Mol Ecol 21:942–959CrossRefPubMedGoogle Scholar
  28. Vera LM, Al-Khamees S, Hervé M (2011) Stocking density affects circadian rhythms of locomotor activity in African catfish, Clarias gariepinus. Chronobiol Int 28:751–757CrossRefPubMedGoogle Scholar
  29. Walters CJ, Juanes F (1993) Recruitment limitation as a consequence of natural selection for use of restricted feeding habits and predation risk taking by juvenile fishes. Can J Fish Aquat Sci 50:2058–2070CrossRefGoogle Scholar
  30. Werner EE, Hall DJ (1988) Ontogenetic habitat shifts in bluegill: the foraging rate-predation risk trade-off. Ecology 69:1352–1366CrossRefGoogle Scholar
  31. Yerushalmi S, Green RM (2009) Evidence for the adaptive significance of circadian rhythms. Ecol Lett 12:970–981CrossRefPubMedGoogle Scholar

Copyright information

© Japan Ethological Society and Springer Japan 2015

Authors and Affiliations

  • Juan Pablo Barriga
    • 1
    Email author
  • Nicolás Andrés Espinós
    • 2
  • Walter Damián Ceferino Torres
    • 3
  • Miguel Ángel Battini
    • 1
  1. 1.Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del ComahueSan Carlos de BarilocheArgentina
  2. 2.Centro Regional Universitario BarilocheUniversidad Nacional del ComahueSan Carlos de BarilocheArgentina
  3. 3.Centro de Ecología Aplicada del NeuquénJunín de los AndesArgentina

Personalised recommendations