Advertisement

Journal of Ethology

, Volume 32, Issue 3, pp 155–163 | Cite as

Aging and foraging efficiency in an orb-web spider

  • Mylène Anotaux
  • Camille Toscani
  • Raymond Leborgne
  • Nicolas Châline
  • Alain Pasquet
Article

Abstract

Aging is often associated with reduced behavioral performance such as decreased locomotion or food consumption, related to a deterioration in physiological functions. In orb-web spiders, webs are used to capture prey and aging can affect web-building behavior and web structure. Here, we investigated the effect of aging on prey capture in the orb-web spider Zygiella x-notata. The ability of adult females to capture flies was examined at different ages. The rate of prey capture did not change with age, but older spiders took more time to subdue and capture the prey. Alterations which appeared in web structure with age (increase in the number of anomalies affecting radii and capture spiral) affected prey capture behavior. Furthermore, the analysis of individual performance (carried out on 17 spiders at two different ages) showed that older females spent more time handling the prey and finding it in the web. Our results suggest that, in the laboratory, age does not affect prey capture rates but it influences prey capture behavior by affecting web structure or/and spider motor functions.

Keywords

Aging Prey capture efficiency Orb-web spider Web structure Zygiella x-notata 

Notes

Acknowledgments

The University of Nancy supported this work with a grant to M. Anotaux. The study is supported by a grant of the CNRS program “Longévité et Vieillissement”. We thank the reviewers for their invaluable comments. We also thank J. Marchal and L. Bahans who helped collect the spiders in 2008 and 2009 and assisted with spider breeding in the laboratory in 2009. Finally, we thank Dr. Leigh Gebbie, LGK Australia, for corrections.

References

  1. Altun M, Bergman E, Edstrom E, Johnson H, Ulfhake B (2007) Behavioral impairments of the aging rat. Physiol Behav 92:911–923PubMedCrossRefGoogle Scholar
  2. Anotaux M, Marchal J, Châline N, Desquilbet L, Leborgne R, Gilbert C, Pasquet A (2012) Ageing alters spider orb-web construction. Anim Behav 84:1113–1121CrossRefGoogle Scholar
  3. Arking R (1998) The biology of aging: observations and principles. Sinauer, SunderlandGoogle Scholar
  4. Austad SN, Fischer KE (1991) Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J Gerontol 46:B47–B53PubMedCrossRefGoogle Scholar
  5. Bates DM, Maechler M, Bolker B (2013) lme4: linear mixed-effects models using S4 classes. R package version 0.999999-2Google Scholar
  6. Bel-Venner MC, Venner S (2006) Mate-guarding strategies and male competitive ability: results from a field study in an orb-weaving spider. Anim Behav 71:1315–1322CrossRefGoogle Scholar
  7. Blanton CA, Horwitz BA, Murtagh-Mark C, Gietzen DW, Griffey SM, McDonald RB (1998) Meal patterns associated with the age-related decline in food intake in the Fischer 344 rat. Am Physiol Soc 44(5):R1494–R1502Google Scholar
  8. Coslovsky M, Zschokke S (2009) Asymmetry in orb-webs: an adaptation to web building costs? J Insect Behav 22:29–38CrossRefGoogle Scholar
  9. Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  10. Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4:372–397PubMedCrossRefGoogle Scholar
  11. Harmer AMT, Blackledge TA, Madin JS, Herberstein ME (2011) High-performance spider webs: integrating biomechanics, ecology and behaviour. J R Soc Interface 8:457–471PubMedCentralPubMedCrossRefGoogle Scholar
  12. Heiling AM, Herberstein ME (2000) Interpretations of orb-web variability: a review of past and current ideas. Ekol Bratisl 19:97–106Google Scholar
  13. Holmes DJ, Austad SN (1995) The evolution of avian senescence patterns: implications for understanding primary aging processes. Am Zool 35:307–317Google Scholar
  14. Jones D (1983) Guide des Araignées et des Opilions d’Europe. Delachaux et Niestlé, ParisGoogle Scholar
  15. Jones M, Grotewiel MS (2011) Drosophila as a model for age-related impairment in locomotor and others behaviors. Exp Gerontol 46(5):320–325PubMedCentralPubMedCrossRefGoogle Scholar
  16. Juberthie C (1954) Sur les cycles biologiques des Araignées. Bull Soc Hist Nat Toulouse 89:299–318Google Scholar
  17. Kunter M, Gregoric M, Li D (2010) Mass predicts web asymmetry in Nephila spiders. Naturwissenschaften 97:1097–1105CrossRefGoogle Scholar
  18. Le Bourg E, Minois N (1999) A mild stress, hypergravity exposure, postpones behavioral aging in Drosophila melanogaster. Gerontology 34(2):157–172Google Scholar
  19. Lliadi KG, Boulianne GL (2010) Age-related behavioral changes in Drosophila. Ann N Y Acad Sci 1197:9–18CrossRefGoogle Scholar
  20. McCue JD (1995) The naturalness of dying. JAMA 273:1039–1043PubMedCrossRefGoogle Scholar
  21. Moya-Larano J (2002) Senescence and food limitation in a slowly ageing spider. Funct Ecol 16:734–741CrossRefGoogle Scholar
  22. Murakami S, Murakami H (2005) The effects of aging and oxidative stress on learning behavior in C. elegans. Neurobiol Aging 26:899–905PubMedCrossRefGoogle Scholar
  23. Pasquet A, Marchal J, Anotaux M, Leborgne R (2013) Imperfections in a perfect architecture: the orb web of spiders. Eur J Entomol 110(3):413–500CrossRefGoogle Scholar
  24. Perret M, Aujard F (2006) Vieillissement et rythmes biologiques chez les primates. Méd Sci 22:279–283Google Scholar
  25. Pinheiro JC, Bates DM, Debroy S, Sarkar D (2005) Nlme: linear and non linear mixed-effects models. R package version 3.1-83, R foundation for statistical computing, ViennaGoogle Scholar
  26. Ricklefs RE (2010) Insights from comparative analyses of aging in birds and mammals. Aging Cell 9(2):273–284PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ridgel AL, Ritzmann RE, Scheafer PL (2003) Effects of aging on behaviour and leg kinematics during locomotion in two species of cockroach. J Exp Biol 206:4453–4465PubMedCrossRefGoogle Scholar
  28. Scharf I, Lubin Y, Ovadia O (2011) Foraging decisions and behavioural flexibility in trap-building predators: a review. Biol Rev Camb Philos Soc 86(3):626–639PubMedCrossRefGoogle Scholar
  29. Sensenig AT, Agnarsson I, Blackledge TA (2011) Adult spiders use tougher silk: ontogenetic changes in web architecture and silk biomechanics in the orb-weaver spider. J Zool 285:28–38Google Scholar
  30. Simon AF, Liang DT, Krantz DE (2006) Differential decline in behavioral performance of Drosophila melanogaster with age. Mech Ageing Dev 127:647–651PubMedCrossRefGoogle Scholar
  31. Thévenard L, Leborgne R, Pasquet A (2004) Web-building management in an orb-weaving spider, Zygiella x-notata: influence of prey and conspecifics. C R Biol 327:84–92PubMedCrossRefGoogle Scholar
  32. Tofilsky A (2000) Senescence and learning in honeybee (Apis mellifera) workers. Acta Neurobiol Exp 60:35–39Google Scholar
  33. Toscani C, Leborgne R, Pasquet A (2012) Analysis of web building anomalies in the orb weaving spider Zygiella x-notata (Araneae, Araneidae). Arachnol Mitt 43:79–83Google Scholar
  34. Venner S, Pasquet A, Leborgne R (2000) Web-building behaviour in the orb weaving spider Zygiella x-notata: influence of experience. Anim Behav 59:603–611PubMedCrossRefGoogle Scholar
  35. Venner S, Thevenard L, Pasquet A, Leborgne R (2001) Estimation of the web’s capture thread length in orb-weaving spiders: determining the most efficient formula. Ann Entomol Soc Am 94(3):490–496CrossRefGoogle Scholar
  36. Venner S, Bel-Venner MC, Pasquet A, Leborgne R (2003) Body-mass-dependant cost of web-building behavior in an orb weaving spider, Zygiella x-notata. Naturwissenschaften 90:269–272PubMedCrossRefGoogle Scholar
  37. Vollrath F (1992) Analysis and interpretation of orb spider exploration and web-building behavior. Adv Stud Behav 21:147–199CrossRefGoogle Scholar
  38. Zschokke S (2000) Form and function of the orb-web. Eur Arachnol 2002:99–106Google Scholar

Copyright information

© Japan Ethological Society and Springer Japan 2014

Authors and Affiliations

  1. 1.Laboratoire Expression et Evolution des Comportements, Faculté des Sciences et TechniquesUniversité de LorraineVandoeuvre-Les-NancyFrance
  2. 2.Ecole nationale vétérinaire d’Alfort, UMR 7179 CNRS MNHNUniversité Paris-EstMaisons-AlfortFrance
  3. 3.Laboratoire d’Ethologie Expérimentale et Comparée EA 4443Université Paris 13VilletaneuseFrance

Personalised recommendations