Feasibility of energy generation by methane emissions from a landfill in southern Mexico

  • Pablo Emilio Escamilla-GarcíaEmail author
  • Martha E. Jiménez-Castañeda
  • Emmanuel Fernández-Rodríguez
  • Silvia Galicia-Villanueva


This research addresses the use of methane (CH4) for energy generation in a landfill located in Southern Mexico. To evaluate the feasibility of this renewable and sustainable energy project, a LandGEM model was used to estimate the CH4-emissions, the environmental benefits and the economic profitability. Taken together, results showed an average CH4-production of 2932 ft3/min, with a maximum CH4-generation flowrate of 4072 ft3/min (115.3 m3). Energy generation resulted in 32.396 million KW h/year with a hot water/steam production of 63.990 million BTU/year. The installed capital costs of a 15-years project were estimated in $9,034,907 USD; economic parameters showed a financial profitability with a net present value of $6,304,060 and an internal rate of return of 25%. The environmental benefits reported a total collection and destruction of CH4 at 9,824,469,979 ft3 (278,198,009.2 m3). The results obtained in this research can be used to conduct further studies to implement waste-to-energy technologies in Mexico and thus improve the sector of sustainable and renewable energy.


Landfill gas Methane Waste-to-energy Economic feasibility Landfills in Mexico 



  1. 1.
    Andres R, Fielding D, Marland G, Boden T, Kumar N, Kearney A (1999) Carbon dioxide emissions from fossil-fuel use, 1751–1950. Tellus B 51:759–765. CrossRefGoogle Scholar
  2. 2.
    Owens S, Driffill L (2008) How to change attitudes and behaviours in the context of energy. Energy Policy 36:4412–4418. CrossRefGoogle Scholar
  3. 3.
    Månsson A (2014) Energy, conflict and war: towards a conceptual framework. Energy Res Soc Sci 4:106–116. CrossRefGoogle Scholar
  4. 4.
    Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189. CrossRefGoogle Scholar
  5. 5.
    Inman M (2013) The true cost of fossil fuels. Sci Am 308:58–61. CrossRefGoogle Scholar
  6. 6.
    Klare M, (2013) Rushing for the Arctic’s riches. The New York Times, vol 7. Accessed 5 Oct 2018
  7. 7.
    Schmidt C (2011) Arctic oil drilling plans raise environmental health concerns. Environ Health Perspect 119:116–117. CrossRefGoogle Scholar
  8. 8.
    Alemán-Nava G, Casiano-Flores V, Cárdenas-Chávez D, Díaz-Chavez R, Scarlat N, Mahlknecht J, Dallemand J, Parra R (2014) Renewable energy research progress in Mexico: a review. Renew Sustain Energy Rev 32:140–153. CrossRefGoogle Scholar
  9. 9.
    SIE (2019) Sistema de Información Energética. Secretaría de Energía, Mexico. Accessed 9 Jan 2019
  10. 10.
    Guerrero L, Maas G, Hogland W (2013) Solid waste management challenges for cities in developing countries. Waste Manag 33:220–232. CrossRefGoogle Scholar
  11. 11.
    Marshall R, Farahbakhsh K (2013) Systems approaches to integrated solid waste management in developing countries. Waste Manag 33:988–1003. CrossRefGoogle Scholar
  12. 12.
    Cancino-Solórzano Y, Paredes-Sánchez J, Gutiérrez-Trashorras A, Xiberta-Bernat J (2016) The development of renewable energy resources in the State of Veracruz, Mexico. Util Policy 39:1–4. CrossRefGoogle Scholar
  13. 13.
    Schneider P, Lämmel A, Schmitt A, Nam N (2017) Current and future solid waste management system in Northern Viet Nam with focus on Ha Noi: climate change effects and landfill management. J Mater Cycles Waste Manag 19:1106–1116. CrossRefGoogle Scholar
  14. 14.
    Kaza S, Yao L, Bhada-Tata P, Van-Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank, Washington D.C.CrossRefGoogle Scholar
  15. 15.
    Gómez G, Meneses M, Ballinas L, Castells F (2009) Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico. Waste Manag 29:2018–2024. CrossRefGoogle Scholar
  16. 16.
    Hernández B, Katsurada H, Alvarez M, García-Torres E, Sosa M (2013) Programa estatal para la prevención y gestión integral de los residuos sólidos urbanos y de manejo especial en el estado de Oaxaca. SEMAEDESO, OaxacaGoogle Scholar
  17. 17.
    Nava-Uribe E, Juárez-López A, Sampedro-Rosas M (2015) Análisis comparativo de los residuos sólidos domésticos en localidades semirurales y rurales del estado de Guerrero, México. Tlamati 6:11–19. Accessed 20 Dec 2018
  18. 18.
    FAO (2016) Pérdidas y desperdicios de alimentos en América Latina y el Caribe. Oficina Regional de la FAO para América Latina y el Caribe, PanamáGoogle Scholar
  19. 19.
    Spokas K, Bogner J, Chanton J, Morcet M, Aran C, Graff C, Golvan Y, Hebe I (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Manag 26:516–525. CrossRefGoogle Scholar
  20. 20.
    IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies. Accessed 1 Jan 2019
  21. 21.
    Salomon K, Silva E (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33:1101–1107. CrossRefGoogle Scholar
  22. 22.
    Münster M, Meibom P (2011) Optimization of use of waste in the future energy system. Energy 36:1612–1622. CrossRefGoogle Scholar
  23. 23.
    Brunner P, Rechberger H (2015) Waste to energy—key element for sustainable waste management. Waste Manag 37:3–12. CrossRefGoogle Scholar
  24. 24.
    Bolan N, Thangarajan R, Seshadri B, Jena U, Das K, Wang H, Naidu R (2013) Landfills as a biorefinery to produce biomass and capture biogas. Biores Technol 135:578–587. CrossRefGoogle Scholar
  25. 25.
    Zairi M, Aydi A, Dhia H (2014) Leachate generation and biogas energy recovery in the Jebel Chakir municipal solid waste landfill, Tunisia. J Mater Cycles Waste Manag 16:141–150. CrossRefGoogle Scholar
  26. 26.
    Chun S (2017) Mechanism of hydrogen sulfide generation from a composite waste landfill site: a case study of the ‘Sudokwon Landfill Site’, Korea. J Mater Cycles Waste Manag 19:443–452. CrossRefGoogle Scholar
  27. 27.
    Kumar S, Gaikwad S, Shekdar A, Kshirsagar P, Singh R (2004) Estimation method for national methane emission from solid waste landfills. Atmos Environ 38:3481–3487. CrossRefGoogle Scholar
  28. 28.
    Amini H, Reinhart D, Mackie K (2012) Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manag 32:305–316. CrossRefGoogle Scholar
  29. 29.
    Scharff H, Jacobs J (2006) Applying guidance for methane emission estimation for landfills. Waste Manag 26:417–429. CrossRefGoogle Scholar
  30. 30.
    Krause M, Chickering G, Townsend T (2016) Translating landfill methane generation parameters among first-order decay models. J Air Waste Manag Assoc 66:1084–1097. CrossRefGoogle Scholar
  31. 31.
    EPA (2005) Landfill gas emissions model (LandGEM) version 3.02 user’s guide. Environmental Protection Agency, Washington D.C.Google Scholar
  32. 32.
    INEGI (2015) Número de habitantes: Oaxaca. Instituto Nacional de Estadística y Geografía. Accessed 28 Nov 2018
  33. 33.
    INEGI (2016) Conociendo Oaxaca. Insituto Nacional de Estadística y Geografía, Ciudad de MéxicoGoogle Scholar
  34. 34.
    Jo J, Kim W (2018) Market potential of biomethane as alternative transportation fuel in South Korea. J Mater Cycles Waste Manag 20:864–876. CrossRefGoogle Scholar
  35. 35.
    Fei F, Wen Z, De-Clercq D (2019) Spatio-temporal estimation of landfill gas energy potential: a case study in China. Renew Sustain Energy Rev 103:217–226. CrossRefGoogle Scholar
  36. 36.
    Ghosh P, Shah G, Chandra R, Sahota S, Kumar H, Vijay V, Thakur I (2019) Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Biores Technol 272:611–615. CrossRefGoogle Scholar
  37. 37.
    Pillai J, Riverol C (2018) Estimation of gas emission and derived electrical power generation from landfills. Trinidad and Tobago as study case. Sustain Energy Technol Assess 29:139–146. CrossRefGoogle Scholar
  38. 38.
    Asadollahfardi G, Asadi M, Youssefi M, Elyasi S, Mirmohammadi M (2015) Experimental and mathematical study on ammonia emission from Kahrizak landfill and composting plants, Tehran, Iran. J Mater Cycles Waste Manag 17:350–358. CrossRefGoogle Scholar
  39. 39.
    Mambeli R, Tiago G, Moreira A, Ferreira C, Fernandes M, Sales J, Sayuri H, Martins L, Silva I, Martuscelli E, Rocha J (2018) A potential of the biogas generating and energy recovering from municipal solid waste. Renew Energy Focus 25:4–16. CrossRefGoogle Scholar
  40. 40.
    Calabro P (2009) Greenhouse gases emission from municipal waste management: the role of separate collection. Waste Manag 29:2178–2187. CrossRefGoogle Scholar
  41. 41.
    Escamilla-García P, Tavera-Cortés M, Pérez-Soto F (2019) Characterisation and calorific potential of waste generated in Mexico City for energy production. Int J Environ Waste Manag 23:123–140. CrossRefGoogle Scholar
  42. 42.
    CONAGUA (2018) Reporte del Clima en México. Comisión Nacional del Agua Mexico. Accessed 15 Nov 2018
  43. 43.
    Mou Z, Scheutz C, Kjeldsen P (2015) Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills. Waste Manag 35:170–176. CrossRefGoogle Scholar
  44. 44.
    Escamilla-García P (2019) Efficiency and reliability of theoretical models of biogas for landfills. LA GRANJA Revista de Ciencias de la Vida 29:33–44. CrossRefGoogle Scholar
  45. 45.
    Papadias D, Ahmed S, Kumar R (2012) Fuel quality issues with biogas energy—an economic analysis for a stationary fuel cell system. Energy 44:257–277. CrossRefGoogle Scholar
  46. 46.
    Elwell A, Elsayed N, Kuhn J, Joseph B (2018) Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes. Waste Manag 73:189–196. CrossRefGoogle Scholar
  47. 47.
    Secretariat of Environment and Natural Resources of Mexico (2016) Compromisos de mitigación y adaptación ante el cambio climático para el periodo 2020–2030. Accessed 1 Feb 2019
  48. 48.
    INECC (2014) Inventario Nacional de Emisiones GEI. Accessed 3 Feb 2019
  49. 49.
    Escamilla-García P, Tavera-Cortés M, Sandoval-Gómez R, Salinas-Callejas E, Alvarado-Raya H (2016) Economic feasibility analysis for electrical generation from biogas in waste disposal sites in Mexico City. Appl Econ 48:5761–5771. CrossRefGoogle Scholar
  50. 50.
    Pärssinen M, Wahlroos M, Manner J, Syeari S (2019) Waste heat from data centers: an investment analysis. Sustain Cities Soc 44:428–444. CrossRefGoogle Scholar
  51. 51.
    Pillai J, Riverol C (2018) Estimation of gas emission and derived electrical power generation from landfills. Trinidad and Tobago as study case. Sustain Energy Technol Assess 29:139–146. CrossRefGoogle Scholar
  52. 52.
    Asdrubali F, Ballarini I, Corrado V, Evangelisti L, Grazieschi G, Guattari C (2019) Energy and environmental payback times for an NZEB retrofit. Build Environ 147:461–472. CrossRefGoogle Scholar
  53. 53.
    SENER (2018) Programa de Desarrollo del Sistema Eléctrico Nacional. Secretaría de Energía. Accessed 14 Jan 2019
  54. 54.
    Tsai W (2016) Analysis of municipal solid waste incineration plants for promoting power generation efficiency in Taiwan. J Mater Cycles Waste Manag 18:393–398. CrossRefGoogle Scholar
  55. 55.
    Fruergaard T, Christensen TH, Astrup T (2010) Energy recovery from waste incineration: assessing the importance of district heating networks. Waste Manag 30:1264–1272. CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Politécnico NacionalMexico CityMexico
  2. 2.Technological Institute of MeridaMéridaMexico

Personalised recommendations