Advertisement

Ecologically derived waste management of conventional plastics

  • Alicia Lee
  • Mei Shan LiewEmail author
REVIEW
  • 92 Downloads

Abstract

The accumulation of plastic waste is a pressing environmental problem, growing hand-in-hand with the rising production and consumption of consumer products. The robustness and intrinsic strength of plastics, which render them extremely useful in various packaging applications, are a double-edged sword as they are likewise highly resistant to degradation and may persist for several millennia. Conventional waste treatment solutions are increasingly unable to manage the growing volume of such waste, bringing us to the brink of ecological disaster. Interestingly, environmental microorganisms are beginning to evolve their own biological means of thriving within such environments through production of metabolic intermediaries that enable them to utilize plastics as energy sources. Here, we present a brief review of the current literature, highlighting various micro- and multicellular organisms that have been found to degrade plastics, as well as propose some strategies for industrialization of these processes in the future.

Keywords

Microorganisms Biodegradation Polyethylene terephthalate 

Notes

Acknowledgements

The authors are grateful to Entrepreneur First for funding support.

References

  1. 1.
  2. 2.
    Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22. http://nopr.niscair.res.in/handle/123456789/7326 Google Scholar
  3. 3.
  4. 4.
    Beaumont NJ, Aanesen M, Austen MC, Borger T, Clark JR, Cole M, Hooper T, Lindeque PK, Pascoe C, Wyles KJ (2019) Global ecological, social, and economic impacts of marine plastic. Mar Pollut Bull 142:189–195CrossRefGoogle Scholar
  5. 5.
    World Economic Forum (2016) The New Plastics Economy. https://www.weforum.org/reports/the-new-plastics-economy-rethinking-the-future-of-plastics. Accessed 26 April 2019
  6. 6.
    Watson R (2018) Time is running out: The U.S. landfill capacity crisis. Waste business journal. https://nrra.net/sweep/time-is-running-out-the-u-s-landfill-capacity-crisis/ Accessed 15 April 2019
  7. 7.
    Mahmud AQ (2018) ‘Cannot sell so they burn’: what’s next in the uncertain future for plastic waste in Singapore? CNA. https://www.channelnewsasia.com/news/singapore/china-bans-plastic-waste-whats-next-for-recycling-in-singapore-10281026 Accessed 14 April 2019
  8. 8.
    de Castella T (2011) Tipping point: what happens when our landfills are full? The telegraph. https://www.telegraph.co.uk/news/earth/businessandecology/recycling/8849010/Tipping-point-what-happens-when-our-landfills-are-full.html Accessed 14 April 2019
  9. 9.
    Chen W, McCarthy TJ (1998) Chemical surface modifications of poly(ethylene terephthalate). Macromolecules 31:3648–3655CrossRefGoogle Scholar
  10. 10.
    Arkatkar A, Juwarkar AA, Bhaduri S, Uppara PV, Doble M (2010) Growth of Psuedomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64:530–536CrossRefGoogle Scholar
  11. 11.
    Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad 105:21–29CrossRefGoogle Scholar
  12. 12.
    Brueckner T, Eberl A, Heumann S, Rabe M, Guebitz GM (2008) Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics. J Poly Sci 46:6435–6443CrossRefGoogle Scholar
  13. 13.
    Uekert T, Kuehnel MF, Wakerley DW, Reisner E (2018) Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ 11:2853–2857CrossRefGoogle Scholar
  14. 14.
    Ali SS, Qazi IA, Arshad M, Khan Z, Voice TC, Mehmood CT (2016) Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes. Environ Nanotechnol Monit Manag 5:44–53CrossRefGoogle Scholar
  15. 15.
    Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers: a review. Pol J Environ Stud 19:255–266Google Scholar
  16. 16.
    Ronkvist AM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138CrossRefGoogle Scholar
  17. 17.
    Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manage 59:526–536CrossRefGoogle Scholar
  18. 18.
    Bhardwaj H, Gupta R, Tiwari A (2012) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ.  https://doi.org/10.1007/s10924-012-0456-z CrossRefGoogle Scholar
  19. 19.
    Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742CrossRefGoogle Scholar
  20. 20.
    Arkatkar A, Arutchelvi J, Bhaduri S, Uppara PV, Doble M (2009) Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeterior Biodegrad 63:106–111CrossRefGoogle Scholar
  21. 21.
    Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacteria that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199CrossRefGoogle Scholar
  22. 22.
    Wei R, Zimmermann W (2017) Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microb Biotechnol 10:1302–1307CrossRefGoogle Scholar
  23. 23.
    Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78(5):1556–1562CrossRefGoogle Scholar
  24. 24.
    Muller RJ, Schrader H, Profe J, Dresler K, Deckwer WD (2005) Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolyase from T. fusca. Macromol Rapid Commun 26:1400–1405CrossRefGoogle Scholar
  25. 25.
    Sulaiman S, You DJ, Kanaya E, Koga Y, Kanaya S (2014) Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry 53:1858–1869CrossRefGoogle Scholar
  26. 26.
    Baker PJ, Poultney C, Liu Z, Gross R, Montclare JK (2012) Identification and comparison of cutinases for synthetic polyester degradation. Appl Microbiol Biotechnol 93:229–240CrossRefGoogle Scholar
  27. 27.
    Tanasupawat S, Takehana T, Yoshida S, Hiraga K, Oda K (2016) Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int J Syst Evol Microbiol 66:2813–2818CrossRefGoogle Scholar
  28. 28.
    Then J, Wei R, Oeser T, Barth M, Belisario-Ferrari MR, Schmidt J, Zimmermann W (2015) Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol J 10:592–598CrossRefGoogle Scholar
  29. 29.
    Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77:100–106CrossRefGoogle Scholar
  30. 30.
    Lwanga EH, Thapa B, Yang X, Gertsen H, Salanki T, Geissen V, Garbeva P (2018) Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration. Sci Total Environ 624:753–757CrossRefGoogle Scholar
  31. 31.
    Volke-Sepulveda T, Saucedo-Castaneda G, Gutierrez-Rojas M, Manzur A, Favela-Torres E (2002) Thermally treated low density polyethylene biodegradation by Penicillum pinophilum and Aspergillus niger. J Appl Polym Sci 83:305–314CrossRefGoogle Scholar
  32. 32.
    Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104Google Scholar
  33. 33.
    Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100CrossRefGoogle Scholar
  34. 34.
    Jeyakumar D, Chirsteen J, Doble M (2013) Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol 148:78–85CrossRefGoogle Scholar
  35. 35.
    Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupattelli P, Sermanni GG (1993) Isotatic polypropylene biodegradation by a microbial community: physiochemical characterization of metabolites produced. Appl Environ Microbiol 59:3700–4695CrossRefGoogle Scholar
  36. 36.
    Atiq N, Ahmed S, Ali MI, Andleeb S, Ahmad B, Robson G (2010) Isolation and identification of polystyrene biodegrading bacteria from soil. Afr J Microbiol Res 4:1537–1541Google Scholar
  37. 37.
    Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for 32 years. J Appl Polym Sci 56:1789–1796CrossRefGoogle Scholar
  38. 38.
    Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 19:851–858CrossRefGoogle Scholar
  39. 39.
    Schmidt FR (2005) Optimization and scale up of industrial fermentation process. Appl Microbiol Biotechnol 68:425–435CrossRefGoogle Scholar
  40. 40.
    Sabra S, Zeng AP (2015) Mixed microbial cultures for industrial biotechnology: success, chance, and challenges. In: Grunwald P (ed) Industrial biocatalysis. CRC Press, Boca Raton, pp 205–237Google Scholar
  41. 41.
    Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784CrossRefGoogle Scholar
  42. 42.
    Bombelli P, Howe CJ, Bertocchini F (2017) Poly-ethylene biodegradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R83–R293CrossRefGoogle Scholar
  43. 43.
    Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086CrossRefGoogle Scholar
  44. 44.
    Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2 role of gut microorganisms. Environ Sci Technol 49:12080–12086CrossRefGoogle Scholar
  45. 45.
    Akhtar Y, Isman MB (2018) Insects as an alternative protein source. In: Yada RY (ed) Proteins in food processing, vol 2. Elsevier, Amsterdam, pp 263–288CrossRefGoogle Scholar
  46. 46.
    Bergmann M, Gutow L, Klages M (2015) Marine anthropogenic litter. Springer, New YorkCrossRefGoogle Scholar
  47. 47.
    World Health Organization (2019) Health Effects of UV Radiation. https://www.who.int/uv/health/uv_health2/en/ Accessed 4 May 2019
  48. 48.
    Pellis A, Gamerith C, Ghazaryan G, Ortner A, Acero EH, Guebitz GM (2016) Ultrasound-enhanced enzymatic hydrolysis of poly(ethylene terephthalate). Bioresourc Technol 218:1298–1302CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Taraph TechnologiesSingaporeSingapore

Personalised recommendations