Advertisement

Application and development of methanotrophs in environmental engineering

  • Seon-yeong Park
  • Chang-gyun KimEmail author
REVIEW
  • 81 Downloads

Abstract

Bioconversion by aerobic methanotrophs, with their relatively high selectivity for specific substance (i.e., methane), is a more efficient and cost-effective methanol production method compared to chemical processes. Aerobic methanotrophs oxidize methane to oxidize to methanol, then formaldehyde, followed by formate, and finally carbon dioxide via enzymatic reaction pathways. One of the intermediates of this process, methanol can be recovered by inhibiting enzymatic catalysis of methanol dehydrogenase while maintaining the activity of methane monooxygenase (MMO). Then, the biologically converted methanol is available for use in chemical or alternative fuel production, which, in turn, contributes to reducing greenhouse gas emissions, consequently completing allowable carbon resource circulation. Furthermore, methanotrophs decompose persistent organic pollutants, including halogenated hydrocarbons through MMO reaction. However, many studies have addressed the restrictions associated with methanotrophic oxidation, e.g., slow species growth rate, organic substance uptake limitations, and difficulty in controlling MMO and methanol dehydrogenase activities. Thus, there are additional incubation conditions for methanotrophs that require optimization such as methane and oxygen gas fractions, gas transfer rate to cells, and bioreactor design.

Keywords

Soluble methane monooxygenase Particulate methane monooxygenase Methanol dehydrogenase Methane oxidation Co-metabolism 

Notes

Acknowledgements

This research was supported by a research grant from INHA University.

References

  1. 1.
    Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471Google Scholar
  2. 2.
    IPCC (2014) Intergovernmental Panel on Climate Chage (2014) Climate Change 2014Google Scholar
  3. 3.
    Nair DNK, Zachariah EJ, Vinod P (2015) Investigations on enhanced in situ bioxidation of methane from landfill gas (LFG) in a lab-scale model. J Mater Cycles Waste Manag 19:172–179.  https://doi.org/10.1007/s10163-015-0397-4 CrossRefGoogle Scholar
  4. 4.
    Chiemchaisri C, Chiemchaisri W, Chittanukul K, Soontornlerdwanich W, Tanthachoon N (2010) Effect of leachate irrigation on methane oxidation in tropical landfill cover soil. J Mater Cycles Waste Manag 12:161–168.  https://doi.org/10.1007/s10163-009-0284-y CrossRefGoogle Scholar
  5. 5.
    Humer M, Lechner P (1999) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag Res 17:443–452.  https://doi.org/10.1034/j.1399-3070.1999.00064.x CrossRefGoogle Scholar
  6. 6.
    Sheets JP, Ge X, Li YF, Yu Z, Li Y (2016) Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour Technol 201:50–57.  https://doi.org/10.1016/j.biortech.2015.11.035 CrossRefGoogle Scholar
  7. 7.
    Conrado RJ, Gonzalez R (2014) Envisioning the bioconversion of methane to liquid fuels. Science 343:621–623.  https://doi.org/10.1126/science.1246929 CrossRefGoogle Scholar
  8. 8.
    Semrau JD (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2:1–7CrossRefGoogle Scholar
  9. 9.
    Benner J, De Smet D, Ho A, Kerckhof FM, Vanhaecke L, Heylen K, Boon N (2015) Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants. Appl Microbiol Biotechnol 99:3609–3618.  https://doi.org/10.1007/s00253-014-6226-1 CrossRefGoogle Scholar
  10. 10.
    Muenmee S, Chiemchaisri W, Chiemchaisri C (2015) Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int Biodeterior Biodegrad 102:172–181.  https://doi.org/10.1016/j.ibiod.2015.03.015 CrossRefGoogle Scholar
  11. 11.
    Muenmee S, Chiemchaisri W, Chiemchaisri C (2016) Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad 113:244–255.  https://doi.org/10.1016/j.ibiod.2016.03.016 CrossRefGoogle Scholar
  12. 12.
    Jahng D, Wood TK (1994) Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl Environ Microbiol 60:2473–2482Google Scholar
  13. 13.
    Lee SW, Keeney DR, Lim DH, Dispirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare. Appl Environ Microbiol 72:7503–7509.  https://doi.org/10.1128/AEM.01604-06 CrossRefGoogle Scholar
  14. 14.
    Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152.  https://doi.org/10.1016/j.ymben.2015.03.010 CrossRefGoogle Scholar
  15. 15.
    Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW, Lee EY (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24:1597–1605.  https://doi.org/10.4014/jmb.1407.07070 CrossRefGoogle Scholar
  16. 16.
    Fei Q, Guarnieri MT, Tao L, Laurens LML, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol. Adv 32:596–614.  https://doi.org/10.1016/j.biotechadv.2014.03.011 Google Scholar
  17. 17.
    Lee OK, Hur DH, Nguyen DTN, Lee EY (2016) Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from the methane. Biofuels Bioprod Biorefining 10:848–863.  https://doi.org/10.1002/bbb CrossRefGoogle Scholar
  18. 18.
    Grosse S, Laramee L, Wendlandt KD, McDonald IR, Miguez CB, Kleber H-P (1999) Purification and characterization of the soluble methane monooxygenase of the type II Methanotrophic Bacterium Methylocystis sp. strain WI 14. Appl Environ Microbiol 65:3929–3935Google Scholar
  19. 19.
    Choi D-W, Kunz RC, Boyd ES, Jeremy D, Antholine WE, Han J, Zahn JA, Boyd JM, De Mora AM, Dispirito AA (2003) The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH: quinone oxidoreductase complex from methylococcus capsulatus bath. J D Semrau J. Bacteriol 185:5755–5764.  https://doi.org/10.1128/JB.185.19.5755 CrossRefGoogle Scholar
  20. 20.
    D. J. L. and Stanley HDSH, Prior SD (1983) Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: Studies in batch and continuous cultures. Biotechnol Lett 5:487–492.  https://doi.org/10.1007/BF00132233 CrossRefGoogle Scholar
  21. 21.
    Tinberg CE, Lippard SJ (2011) Dioxygen activation in soluble methane monooxygenase. Acc Chem Res 44:280–288.  https://doi.org/10.1021/ar1001473 CrossRefGoogle Scholar
  22. 22.
    Culpepper MA, Rosenzweig AC (2012) Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 47:483–492.  https://doi.org/10.3109/10409238.2012.697865 CrossRefGoogle Scholar
  23. 23.
    Kenney GE, Rosenzweig AC (2012) Chemistry and biology of the copper chelator methanobactin. ACS Chem Biol 7:260–268., 2012CrossRefGoogle Scholar
  24. 24.
    Frank J, van Krimpen SH, Verwiel PEJ, Jongejan JA, Mulder AC, Duine JA (1989) On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors. Eur J Biochem 184:187–195.  https://doi.org/10.1111/j.1432-1033.1989.tb15006.x CrossRefGoogle Scholar
  25. 25.
    S. N. and Masahiro Shimoda IO (1991) Effect of cyclopropane treatment of Methylosinus trichosporium (OB3b) for lower alkane oxidation. J. Mol. Catal. 64;373–380Google Scholar
  26. 26.
    Takeguchi M, Furuto T, Sugimori D, Okura I (1997) Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl Biochem Biotechnol 68:143–152.  https://doi.org/10.1007/bf02785987 CrossRefGoogle Scholar
  27. 27.
    Kim HG, Han GH, Kim SW (2010) Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol Bioprocess Eng 15:476–480.  https://doi.org/10.1007/s12257-010-0039-6 CrossRefGoogle Scholar
  28. 28.
    Yoo YS, Han JS, Ahn CM, Kim CG (2015) Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. Environ Technol 36:983–991.  https://doi.org/10.1080/09593330.2014.971059 CrossRefGoogle Scholar
  29. 29.
    Chan HTC, Anthony C (1991) The interaction of methanol dehydrogenase and cytochrome the acidophilic methylotroph Acetobacter methanolicus. Biochem. J. 280;139–146Google Scholar
  30. 30.
    Han J-S, Ahn C-M, Mahanty B, Kim C-G (2013) Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in Methanotrophic Consortium from landfill cover soil. Appl Biochem Biotechnol 171:1487–1499.  https://doi.org/10.1007/s12010-013-0410-0 CrossRefGoogle Scholar
  31. 31.
    AlSayed A, Fergala A, Khattab S, ElSharkawy A, Eldyasti A (2018) Optimization of methane bio-hydroxylation using waste activated sludge mixed culture of type I methanotrophs as biocatalyst. Appl Energy 211:755–763.  https://doi.org/10.1016/j.apenergy.2017.11.090 CrossRefGoogle Scholar
  32. 32.
    Lee E-H, Moon K-E, Kim TG, Lee S-D, Cho K-S (2015) Inhibitory effects of sulfur compounds on methane oxidation by a methane-oxidizing consortium. J Biosci Bioeng 120:670–676.  https://doi.org/10.1016/j.jbiosc.2015.04.006 CrossRefGoogle Scholar
  33. 33.
    Wang X, Yue D, Zhao K, Han B, Yang T (2015) Mitigation of non-methane organic compounds through landfill soil cover and its environmental implications. J Mater Cycles Waste Manag 17:616–625.  https://doi.org/10.1007/s10163-015-0403-x CrossRefGoogle Scholar
  34. 34.
    Scheutz C, Pedersen GB, Kjeldsen P (2005) Biodegradation of trace gasses in simulated landfill biocover systems. J Air Waste Manag Assoc 55:878–885.  https://doi.org/10.1080/10473289.2005.10464693 CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Tay J (2015) Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules. J Hazard Mater 286:204–210.  https://doi.org/10.1016/j.jhazmat.2015.01.003 CrossRefGoogle Scholar
  36. 36.
    Rasche ME, Hyman MR, Arp DJ (1991) Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: cometabolic Inactivation of ammonia monooxygenase and substrate specificity. Appl Environ Microbiol 57:2986–2994Google Scholar
  37. 37.
    Heald S, Jenkins RO (1994) Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of pseudomonas putida. Appl Environ Microbiol 60:4634–4637Google Scholar
  38. 38.
    Gou Z, Xing XH, Luo M, Jiang H, Han B, Wu H, Wang L, Zhang F (2006) Functional expression of the particulate methane mono-oxygenase gene in recombinant Rhodococcus erythropolis. FEMS Microbiol Lett 263:136–141.  https://doi.org/10.1111/j.1574-6968.2006.00363.x CrossRefGoogle Scholar
  39. 39.
    Ali H, Scanlan J, Dumont MG, Murrell JC (2006) Duplication of the mmoX gene in Methylosinus sporium: cloning, sequencing and mutational analysis. Microbiology 152:2931–2942.  https://doi.org/10.1099/mic.0.29031-0 CrossRefGoogle Scholar
  40. 40.
    Scanlan J, Dumont MG, Murrell JC (2009) Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 301:181–187.  https://doi.org/10.1111/j.1574-6968.2009.01816.x CrossRefGoogle Scholar
  41. 41.
    Merkx M, Lippard SJ (2002) Why OrfY? Characterization of MMOD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (bath). J Biol Chem 277:5858–5865.  https://doi.org/10.1074/jbc.M107712200 CrossRefGoogle Scholar
  42. 42.
    Zahn JA, Dispirito AA (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178:1018–1029CrossRefGoogle Scholar
  43. 43.
    Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182.  https://doi.org/10.1038/nature03311 CrossRefGoogle Scholar
  44. 44.
    Nakamura T, Hoaki T, Hanada S, Maruyama A, Kamagata Y, Fuse H (2007) Soluble and particulate methane monooxygenase gene clusters in the marine methanotroph Methylomicrobium sp. strain NI. FEMS Microbiol Lett 277:157–164.  https://doi.org/10.1111/j.1574-6968.2007.00953.x CrossRefGoogle Scholar
  45. 45.
    Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54:2283–2294.  https://doi.org/10.1021/acs.biochem.5b00198 CrossRefGoogle Scholar
  46. 46.
    D. Jahng, C. S. Kim, R. S. Hanson, T. K. Wood. (1996) Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria. Biotechnol. Bioeng. 51;349–359.  https://doi.org/10.1002/(SICI)1097-0290(19960805)51:3%3C349::AID-BIT10%3E3.0.CO;2-H CrossRefGoogle Scholar
  47. 47.
    Jahng D, Wood TK (1996) Metal ions and chloramphenicol inhibition of soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol 45:744–749.  https://doi.org/10.1007/s002530050757 CrossRefGoogle Scholar
  48. 48.
    Smith TJ, Slade SE, Burton NP, Murrell C, Dalton H, Murrell JC (2002) Improved system for protein engineering of the hydroxylase component of soluble methane monooxygenase. Appl Environ Microbiol 68:5265–5273.  https://doi.org/10.1128/AEM.68.11.5265 CrossRefGoogle Scholar
  49. 49.
    Shea MT, Walter ME, Duszenko N, Ducluzeau AL, Aldridge J, King SK, Buan NR (2016) pNEB193-derived suicide plasmids for gene deletion and protein expression in the methane-producing archaeon, Methanosarcina acetivorans. Plasmid 84–85:27–35.  https://doi.org/10.1016/j.plasmid.2016.02.003 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Environmental EngineeringINHA UniversityIncheonSouth Korea

Personalised recommendations