Journal of Material Cycles and Waste Management

, Volume 20, Issue 2, pp 1299–1309 | Cite as

Removal of toxic elements from wastewater generated in the decontamination of CCA-treated Eucalyptus sp. and Pinus canadense wood

  • Heldiane S. dos Santos
  • Suzana F. Ferrarini
  • Francine Q. Flores
  • Marçal J. R. Pires
  • Carla M. N. Azevedo
  • Lucie Coudert
  • Jean-François Blais
ORIGINAL ARTICLE
  • 149 Downloads

Abstract

The objective of this study was to apply extraction with hot sulfuric acid to remove Cu, Cr, and As from different species of wood treated with CCA and subsequently evaluate treatment processes for the effluents generated in acid decontamination. This study was conducted in two stages: the first involved applying acid extraction to decontaminate different species of Eucalyptus sp. and Pinus resinosa treated with CCA and the second stage consisted of optimizing the treatment of acidic effluents generated in this process based on precipitation and coagulation. When compared to the initial levels, As, Cu, and Cr removal in the three extraction cycles was over 79%. Classification tests were performed to determine decontamination of the solid wastes generated in the extraction process and the results were lower than the limit established for hazardous waste, according to local legislation. The decontaminated wood obtained in this process can be considered for disposal in landfills or potential reuse. Precipitation was performed using FeCl3 as coagulant and NaOH or Ca(OH)2 as alkalizing agents. The results indicated that the use of FeCl3 and Ca(OH)2 ensures compliance with environmental legislation for both effluents tested, allowing As, Cu, and Cr removal above 98.5%. These findings demonstrate that precipitation can be used to successfully remove toxic elements from wastewater generated by decontamination of CCA-treated wood, opening the possibility of applying this process on an industrial scale.

Keywords

CCA Precipitation Leachate Treated wood Toxic elements 

Notes

Acknowledgements

The authors are grateful to Conselho Nacional de Pesquisa—CNPq (Proc. Nos. 309623/2012-0 and 312323/2015-8) and Fundação de Amparo à Pesquisa do Estado do RS—FAPERGS (Proc. No. 11/1403-8) for their financial support. H. Santos thanks Comissão de Aperfeiçoamento de Pessoal do Nível Superior—CAPES (Proc. PDSE No. 9108/11-4) and Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement)—INRS for the sandwich doctoral fellowship.

Supplementary material

10163_2017_694_MOESM1_ESM.docx (187 kb)
Supplementary material 1 (DOCX 187 KB)

References

  1. 1.
    ABPM—Associação Brasileira de Preservadores de Madeira (2016) ABNT publica duas normas técnicas que marcam o início de nova fase do setor de madeira tratada no país. Home page. http://www.abpm.com.br/noticia/abnt-publica-duas-normas-tecnicas-que-marcam-o-inicio-de-nova-fase-do-setor-de-madeira-tratada-no-pais. Accessed 23 Feb 2016
  2. 2.
    Associação Brasileira de Produtores de Florestas Plantadas—ABRAF (2012) Anuário estatístico da ABRAF 2012 ano base 2011Google Scholar
  3. 3.
    Zhou G, Cooper P (2015) Remediation of ACQ-treated wood waste by Mea extraction. Wood Sci Technol (2015) 49:969–986CrossRefGoogle Scholar
  4. 4.
    Vidal JM, Evangelista WV, Silva JC, Jankowsky IP (2015) Preservação de madeiras no Brasil: histórico, cenário atual e tendências. Ciênc Florest 25(1):257–271 (Portuguese) CrossRefGoogle Scholar
  5. 5.
    Janin A, Blais JF, Mercier G, Drogui P (2009) Optimization of a chemical leaching process for decontamination of CCA-treated wood. J Hazard Mater 169(1–3):136–145CrossRefGoogle Scholar
  6. 6.
    Solo-Gabriele HM, Townsend TG, Hahn DW, Moskal TM, Hosein N, Jambeck J, Jacobi G (2004) Evaluation of XRF and LIBS technologies for on-line sorting of CCA—treated wood waste. Waste Manag 24:413–424CrossRefGoogle Scholar
  7. 7.
    Khan BI, Solo-Gabriele HM, Townsend TG, Cai Y (2006) Release of arsenic to the environment from CCA treated wood. Leaching and speciation during service. Environ Sci Technol 40:988–993CrossRefGoogle Scholar
  8. 8.
    ABNT—Associação Brasileira De Normas Técnicas (2004) Resíduos Sólidos—Classificação NBR 10004. Brasil (in Portuguese) Google Scholar
  9. 9.
    Ferrarini SF, Santos HS, Miranda LG, Azevedo CMN, Pires MJR (2012) Classificação de resíduos de madeira tratada com preservativos à base de arseniato de cobre cromatado e de boro/flúor. Quim Nova 35(9):1767–1771 (Portuguese) CrossRefGoogle Scholar
  10. 10.
    Solo-Gabriele HM, Townsend TG (1999) Disposal practices and management alternatives for CCA-treated wood waste. Waste Manag Res 17:378–389CrossRefGoogle Scholar
  11. 11.
    Helsen L, Van den Bulck E (2005) Review of disposal technologies for chromated copper arsenate (CCA) treated wood waste, with detailed analyses of thermo chemical conversion processes. Environ Pollut 134:301–314CrossRefGoogle Scholar
  12. 12.
    Clausen CA, Kartal SN, Muehl J (2001) Particleboard made from remediated CCA treated wood: evaluation of panel properties. For Prod J 51:61–64Google Scholar
  13. 13.
    Kartal SN (2003) Removal of copper, chromium and arsenic from CCA-C treated wood by EDTA extraction. Waste Manag 23(6):537–546CrossRefGoogle Scholar
  14. 14.
    Coudert L, Blais JF, Mercier G, Cooper P, Janin A, Gastonguay L (2014) Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples. J Environ Manag 132:197–206CrossRefGoogle Scholar
  15. 15.
    Coudert L, Blais JF, Mercier G, Cooper P, Gastonguay L, Morris P, Janin A, Reynier N (2013) Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process. J Hazard Mater 261:277–285CrossRefGoogle Scholar
  16. 16.
    Janin A, Coudert L, Blais JF, Mercier G, Cooper P, Gastonguay L, Morris P (2012) Design and performance of a pilot-scale equipment for CCA-treated wood remediation. Sep Purif Technol 85:90–95CrossRefGoogle Scholar
  17. 17.
    Janin A, Blais JF, Mercier G. Drogui P (2009) Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins. J Hazard Mater 169(1–3):1099–1105CrossRefGoogle Scholar
  18. 18.
    Hingston JA, Collins CD, Murphy RJ, Lester JN (2001) Leaching of chromated copper arsenate wood preservatives: a review. Environ Pollut 111:53–66CrossRefGoogle Scholar
  19. 19.
    Townsend T, Dubey B, Tolaymat T, Solo-Gabriele HM (2005) Preservative leaching from weathered CCA-treated wood. J Environ Manag 75(2):105–113CrossRefGoogle Scholar
  20. 20.
    Silva GA (2008) A lixiviação de Cobre, Cromo, Arsênio e Boro em Madeira Recém Tratada com Preservativos Hidrossolúveis, Segundo Procedimentos da NBR 10005:2004. Ph.D. Dissertation, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, Brasil (in Portuguese) Google Scholar
  21. 21.
    Ferrarini SF, Santos HS, Miranda LG, Azevedo CMN, Maia SM, Pires MJR (2016) Decontamination of CCA-treated eucalyptus wood waste by acid leaching. Waste Manag 49:253–262CrossRefGoogle Scholar
  22. 22.
    Janin A, Zaviska F, Drogui P, Blais JF, Mercier G (2009) Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy 96(4):318–326CrossRefGoogle Scholar
  23. 23.
    Cooper PA, Jeremic D, Taylor JL (2001) Residual CCA levels in CCA-treated poles removed from service. For Prod J 51:58–62Google Scholar
  24. 24.
    Kandem DP (2006) Recycling of wood treated with chromated copper arsenate into composite construction materials. In: Environmental impacts of treated wood. CRC Press, Florida, pp 367–382Google Scholar
  25. 25.
    Radivojevic S, Cooper PA (2010) The effects of wood species and treatment retention on kinetics of CCA-C fixation reactions. Wood Sci Technol 44:269–282CrossRefGoogle Scholar
  26. 26.
    Stevanovic-Janezic T, Cooper PA, Ung YT (2000) Chromated copper arsenate preservative treatment of North American hardwoods. Part 2. CCA leaching performance. Holzforschung 55(1):7–12CrossRefGoogle Scholar
  27. 27.
    Dawson-Andoh BE, Slahor JJ, Osborn L, McDonald L (2002) Effect of pre-extraction by different solvent systems on leaching of CCA components from treated Appalachian hardwoods (solid wood products). For Prod J 52(10):62–66Google Scholar
  28. 28.
    Chaney WR, Phillip E, Pope HLE (2014) Encyclopaedia britannica [Online]; Academic Edition. Encyclopædia Britannica Inc. http://www.britannica.com/EBchecked/topic/ 213554/forestry. Accessed 26 Aug 2014
  29. 29.
    Fu F, Wan Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418CrossRefGoogle Scholar
  30. 30.
    Blais JF, Djedidi Z, Ben Cheikh R, Tyagi RD, Mercier G (2008) Metals precipitation from effluents—a review. Pract Period Toxic Hazard Radioact Waste Manag 12(3):135–149CrossRefGoogle Scholar
  31. 31.
    Kurniawan TA, Chana GYS, Loa WH, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98CrossRefGoogle Scholar
  32. 32.
    ABNT—Associação Brasileira De Normas Técnicas (2004) Procedimento para Obtenção de Extrato Lixiviado de Resíduos Sólidos NBR 10005. Brasil (in Portuguese) Google Scholar
  33. 33.
    ABNT—Associação Brasileira De Normas Técnicas (2004) Procedimento para Obtenção de Extrato Solubilizado de Resíduos Sólidos NBR 10006. Brasil (in Portuguese) Google Scholar
  34. 34.
    Vidor FLR, Pires MJR, Dedavid BA, Montani PDB, Gabiatti A (2009) Inspection of wooden poles in electrical power distribution networks in Southern Brazil. IEEE Trans Power Deliv 25(1):479–484CrossRefGoogle Scholar
  35. 35.
    APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, USAGoogle Scholar
  36. 36.
    Ferrarini SF, Santos HS, Miranda LG, Azevedo CMN, Maia SM, Chaves ES, Pires MJR (2015) Determination ofAs, Cr,and Cu concentrations in CCA-treated wood poles using acid decomposition in closed flasks, oven heating, and ICP-MS analysis. At Spectrosc 36(5):187–195Google Scholar
  37. 37.
    Abruzzi RC, Dedavid BA, Pires MJR, Ferrarini SF (2013) Relationship between density and anatomical structure of different species of Eucalyptus and identification of preservatives. Mater Res 16(6):1428–1438CrossRefGoogle Scholar
  38. 38.
    Santos HS (2010) Padronização de ensaios para identificação de preservantes em postes de madeira e solos de áreas controladas. Ph.D. Dissertation, Pontifícia Universidade Católica do Rio Grande do Sul (in Portuguese) Google Scholar
  39. 39.
    Klock U, Muniz GIB, Hernandez JA, Andrade AS (2005) Química da Madeira, 3th edn. Universidade Federal do Paraná, Curitiba (Portuguese) Google Scholar
  40. 40.
    Bull DC (2001) The chemistry of chromated copper arsenate II; preservative wood interactions. Wood Sci Technol 34(6):450–466CrossRefGoogle Scholar
  41. 41.
    USEPA (2014) Synthetic precipitation leaching procedure, method 1312. https://www.EPA.gov/SW-846/1312.pdf. Accessed 26 Aug 2014
  42. 42.
    USEPA (2014) Toxicity characteristic leaching procedure, method 1311. https://www.EPA.gov/SW-846/1311.pdf. Accessed 26 Aug 2014
  43. 43.
    CONAMA—Conselho Nacional Do Meio Ambiente (2011) Dispõe sobre a Classificação dos Corpos de Água e Padrões de Lançamento de Efluentes, complementa e altera a Resolução n. 357, de 17 de março de 2005. Resolução n. 430 de 13 de maio de 2011. Diário Oficial da União, Brasil (in Portuguese) Google Scholar
  44. 44.
    Esmaeili A, Mesdaghi nia A, Vazirinejad R (2005) Chromium(III) removal and recovery from tannery wastewater by precipitation process. Am J Appl Sci 2(10):1471–1473CrossRefGoogle Scholar
  45. 45.
    Papassiopi N, Virciková E, Nenov V, Kontopoulos A, Molnár L (1996) Removal and fixation of arsenic in the form of ferric arsenates. Three parallel experimental studies. Hydrometallurgy 41:(1996) 243–253CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Heldiane S. dos Santos
    • 1
  • Suzana F. Ferrarini
    • 1
  • Francine Q. Flores
    • 1
  • Marçal J. R. Pires
    • 1
  • Carla M. N. Azevedo
    • 1
  • Lucie Coudert
    • 2
  • Jean-François Blais
    • 2
  1. 1.Programa de Pós-Graduação em Engenharia e Tecnologia de MateriaisPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement)Université du QuébecQuébecCanada

Personalised recommendations