Journal of Material Cycles and Waste Management

, Volume 20, Issue 2, pp 1115–1127 | Cite as

Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures

  • T. Bera
  • T. J. Purakayastha
  • A. K. Patra
  • S. C. Datta
ORIGINAL ARTICLE
  • 89 Downloads

Abstract

The objectives of this study were to assess the physicochemical, nutrient, and spectral properties of biochar prepared from four major agricultural residues of India [rice straw (RSB), wheat straw (WSB), maize stover (MSB), and pearl millet stover (PSB)] at three (400, 500, and 600 °C) pyrolysis temperatures. Pyrolysis temperatures and residue types profoundly influenced biochar properties, for instance, PSB biochar had the greatest pH (10.75 ± 0.01), calcium carbonate equivalent (CCE) (47.8 ± 0.5), and carbonate (CO 3 = ) content (432 ± 17 meq kg−1). Irrespective of residue, greater pyrolysis temperature improves the biochars’ acid-neutralizing capacity by increasing pH in water (pHw), CCE, and CO 3 =  content. The CCE of biochar showed a significant positive correlation with pHw (R 2 = 0.51, p < 0.001) and ash content of biochar (R 2 = 0.54, p < 0.001). A great amount of water-soluble potassium (20.6–29.5 g kg−1) in all the biochars made them suitable for supplying potassium to plants. Infrared spectroscopy explained the functional group formation, while XRD revealed mineral formation in the biochar. Thus, depending on the requirement, diverse properties of biochar can be prepared by designing residue type and pyrolysis temperature suitable for application in a specific soil to alleviate nutrient deficiency and improve soil productivity.

Keywords

Agricultural residue Biochar Pyrolysis temperature Physical properties Nutrient properties Spectral properties 

Notes

Acknowledgements

We are thankful to Dr. Rajesh Kumar, Division of Agricultural Chemicals, for helping in FTIR analysis of biochars. T. Bera is grateful to the Department of Science and Technology, Government of India for Research Fellowship during his doctoral program. We also thank the director and dean of the institute and heads of the division for providing necessary funding and facilities for carrying out this experiment.

Supplementary material

10163_2017_675_MOESM1_ESM.docx (160 kb)
Supplementary material 1 (DOCX 159 kb)

References

  1. 1.
    Jain N, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 14:422–430. doi: 10.4209/aaqr.2013.01.0031 Google Scholar
  2. 2.
    Punia M, Nautiyal VP, Kant Y (2008) Identifying biomass burned patches of agriculture residue using satellite remote sensing data. Curr Sci 94:1185–1190Google Scholar
  3. 3.
    Gupta PK, Sahai S, Singh N, Dixit CK, Singh DP, Sharma C, Tiwari MK, Gupta RK, Garg SC (2004) Residue burning in rice–wheat cropping system: causes and implications. Curr Sci 87:1713–1717Google Scholar
  4. 4.
    Sarkar C, Kumar V, Sinha V (2013) Massive emissions of carcinogenic benzenoids from paddy residue burning in North India. Curr Sci 104:1703–1709Google Scholar
  5. 5.
    Spokas KA, Cantrell KB, Novak JM et al (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989. doi: 10.2134/jeq2011.0069 CrossRefGoogle Scholar
  6. 6.
    Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301. doi: 10.1021/es903140c CrossRefGoogle Scholar
  7. 7.
    Woolf D, Amonette JE, Street-Perrott A et al (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56. doi: 10.1038/ncomms1053 CrossRefGoogle Scholar
  8. 8.
    Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. doi: 10.1007/s00374-002-0466-4 CrossRefGoogle Scholar
  9. 9.
    Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil, 1st edn. Adv Agron. doi: 10.1016/S0065-2113(10)05002-9 Google Scholar
  10. 10.
    Asai H, Samson BK, Stephan HM et al (2009) Biochar amendment techniques for upland rice production in Northern Laos. 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res 111:81–84. doi: 10.1016/j.fcr.2008.10.008 CrossRefGoogle Scholar
  11. 11.
    Purakayastha TJ, Kumari S, Pathak H (2015) Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma 239–240:293–303. doi: 10.1016/j.geoderma.2014.11.009 CrossRefGoogle Scholar
  12. 12.
    Steiner C, Teixeira WG, Lehmann J et al (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290. doi: 10.1007/s11104-007-9193-9 CrossRefGoogle Scholar
  13. 13.
    Van Zwieten L, Kimber S, Downie A et al (2010) A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Aust J Soil Res 48:569–576. doi: 10.1071/SR10003 CrossRefGoogle Scholar
  14. 14.
    Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. doi: 10.1016/j.soilbio.2011.04.022 CrossRefGoogle Scholar
  15. 15.
    Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20. doi: 10.1007/s11104-007-9391-5 CrossRefGoogle Scholar
  16. 16.
    Jin H (2010) Characterizaiton of microbial life colonizing biochar and biochar-amended soils. BMC Biochem. doi: 10.1017/CBO9781107415324.004 Google Scholar
  17. 17.
    Husson O (2013) Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362:389–417. doi: 10.1007/s11104-012-1429-7 CrossRefGoogle Scholar
  18. 18.
    Bera T, Collins HP, Alva AK et al (2016) Biochar and manure effluent effects on soil biochemical properties under corn production. Appl Soil Ecol 107:360–367. doi: 10.1016/j.apsoil.2016.07.011 CrossRefGoogle Scholar
  19. 19.
    Jones DL, Rousk J, Edwards-Jones G et al (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. doi: 10.1016/j.soilbio.2011.10.012 CrossRefGoogle Scholar
  20. 20.
    Laird DA, Fleming P, Davis DD et al (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. doi: 10.1016/j.geoderma.2010.05.013 CrossRefGoogle Scholar
  21. 21.
    Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. doi: 10.1021/ie0207919 CrossRefGoogle Scholar
  22. 22.
    Cheng CH, Lehmann J, Thies JE et al (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488. doi: 10.1016/j.orggeochem.2006.06.022 CrossRefGoogle Scholar
  23. 23.
    AOAC (1999) Official methods of analysis of the Association of Official Analytical Chemists, 16th edn. Association of Official Analytical Chemists, ArlingtonGoogle Scholar
  24. 24.
    Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. doi: 10.1016/j.biortech.2010.11.018 CrossRefGoogle Scholar
  25. 25.
    Veihmeyer FJ, Hendrickson AH (1948) Soil density and root penetration. Soil Sci 65:487–493CrossRefGoogle Scholar
  26. 26.
    Hernandez-Mena LE, Pecora AAB, Beraldo AL (2014) Slow pyrolysis of bamboo biomass: analysis of biochar properties. Chem Eng Trans 37:115–120. doi: 10.3303/CET1437020 Google Scholar
  27. 27.
    Keen BA, Raczkowski H (1921) The relation between the clay content and certain physical properties of a soil. J Agric Sci 11:441–449CrossRefGoogle Scholar
  28. 28.
    Enders A, Hanley K, Whitman T et al (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. doi: 10.1016/j.biortech.2012.03.022 CrossRefGoogle Scholar
  29. 29.
    Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255. doi: 10.1016/j.geoderma.2011.04.021 CrossRefGoogle Scholar
  30. 30.
    ASTM (1990) D1762-84, standard method for chemical analysis of wood charcoal. ASTM International, PhiladelphiaGoogle Scholar
  31. 31.
    Bera T, Purakayastha TJ, Patra AK (2014) Spectral, chemical and physical characterisation of mustard stalk biochar as affected by temperature. Clay Res 33:36–45Google Scholar
  32. 32.
    Amonette JE, Jospeh S (2009) Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 33–43Google Scholar
  33. 33.
    Fidel RB, Laird D, Thompson AML (2013) Evaluation of modified Boehm titration methods for use with biochars. J Environ Qual 42:1771–1778. doi: 10.2134/jeq2013.07.0285 CrossRefGoogle Scholar
  34. 34.
    Wu W, Yang M, Feng Q et al (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenerg 47:268–276. doi: 10.1016/j.biombioe.2012.09.034 CrossRefGoogle Scholar
  35. 35.
    Lee Y, Park J, Ryu C et al (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201. doi: 10.1016/j.biortech.2013.08.135 CrossRefGoogle Scholar
  36. 36.
    Lesch SM, Corwin DL, Robinson DA (2005) Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils. Comput Electron Agric 46:351–378. doi: 10.1016/j.compag.2004.11.007 CrossRefGoogle Scholar
  37. 37.
    Sposito G (1989) The chemistry of soil. Oxford University Press, New YorkGoogle Scholar
  38. 38.
    Zhao L, Cao X, Wang Q et al (2013) Mineral constituents profile of biochar derived from diversified waste biomasses: implications for agricultural applications. J Environ Qual 42:545–552. doi: 10.2134/jeq2012.0232 CrossRefGoogle Scholar
  39. 39.
    Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145. doi: 10.1016/j.jaap.2011.11.018 CrossRefGoogle Scholar
  40. 40.
    Pastorova I, Botto RE, Arisz PW, Boon JJ (1994) Cellulose char structure: a combined analytical Py–GC–MS, FTIR, and NMR study. Carbohydr Res 262:27–47. doi: 10.1016/0008-6215(94)84003-2 CrossRefGoogle Scholar
  41. 41.
    Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2Google Scholar
  42. 42.
    Jankowska H, Swiatkowski A, Choma J (1991) Active carbon. Ellis Horwood, New YorkGoogle Scholar
  43. 43.
    Brewer CE, Unger R, Schmidt-Rohr K, Brown RC (2011) Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 4:312–323. doi: 10.1007/s12155-011-9133-7 CrossRefGoogle Scholar
  44. 44.
    Keiluweit M, Nico PS, Johnson M, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253. doi: 10.1021/es9031419 CrossRefGoogle Scholar
  45. 45.
    Cely P, Gascó G, Paz-Ferreiro J, Méndez A (2015) Agronomic properties of biochars from different manure wastes. J Anal Appl Pyrolysis 111:173–182. doi: 10.1016/j.jaap.2014.11.014 CrossRefGoogle Scholar
  46. 46.
    Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115. doi: 10.1111/gcbb.12018 CrossRefGoogle Scholar
  47. 47.
    Cantrell KB, Hunt PG, Uchimiya M et al (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. doi: 10.1016/j.biortech.2011.11.084 CrossRefGoogle Scholar
  48. 48.
    Zheng R, Chen Z, Cai C et al (2013) Effect of biochars from rice husk, bran, and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil. BioResources 8:5965–5982. doi: 10.15376/biores.8.4.5965-5982 CrossRefGoogle Scholar
  49. 49.
    Rehrah D, Bansode RR, Hassan O, Ahmedna M (2015) Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. J Anal Appl Pyrolysis. doi: 10.1016/j.jaap.2015.12.022 Google Scholar
  50. 50.
    Pavia DL, Lampman GM, Kriz GS (1979) Introduction to spectroscopy: a guide for students of organic chemistry. Saunders Golden Sunburst Series, PhiladelphiaGoogle Scholar
  51. 51.
    Kloss S, Zehetner F, Dellantonio A et al (2011) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000. doi: 10.2134/jeq2011.0070 CrossRefGoogle Scholar
  52. 52.
    Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. doi: 10.1016/j.biortech.2010.02.052 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • T. Bera
    • 1
    • 2
  • T. J. Purakayastha
    • 1
  • A. K. Patra
    • 1
    • 3
  • S. C. Datta
    • 1
  1. 1.Division of Soil Science and Agricultural ChemistryICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA
  3. 3.ICAR-Indian Institute of Soil ScienceBhopalIndia

Personalised recommendations