Advertisement

Journal of Material Cycles and Waste Management

, Volume 19, Issue 1, pp 413–422 | Cite as

Leachate direct-discharge limits and incentives related to landfill aftercare costs

  • Markku Pelkonen
  • Yu Wang
SPECIAL FEATURE: ORIGINAL ARTICLE The 9th International Conference on Waste Management and Technology, 9th ICWMT 2014

Abstract

Society needs sustainable methods for landfilling from an environmental perspective, but they have to be cost effective and affordable. Aftercare represents considerable costs within waste management system and costs can be expected to accrue over a long period of time showing the need to compare different management options. Direct-discharge limits for leachate COD and nitrogen are different in various (European) countries. When leachate COD or nitrogen has decreased at the latter part of the aftercare period, effluent limits 50 or 200 mg/l for COD and 10 or 70 mg/l for nitrogen have a considerable impact on period length. The objective of this paper is to discuss the effects of leachate discharge limits on landfill aftercare and leachate management costs in various conditions. Landfill simulator results and modelling are used to estimate leachate concentrations in three different scenarios. It is suggested that stricter discharge limits (shown before) impact on the costs of activated carbon filtration (1.4-fold) and biological treatment (1.1–1.24-fold). Stricter limits also extend the aftercare period length considerably, but with substantial water circulation the differences are clearly smaller. These results support the recent suggestion of aftercare incentives, and some details of applying these incentives in different conditions are discussed.

Keywords

Landfill leachate management Nitrogen COD Discharge limits Landfill aftercare costs Incentives 

Notes

Acknowledgments

The financial support of this work by Ekokem Oy Ab support funding in 2014 is acknowledged (YW).

References

  1. 1.
    Laner D (2011) Understanding and evaluating long-term environmental risks from landfills. Ph.D. Dissertation, Vienna University of Technology, Vienna, AustriaGoogle Scholar
  2. 2.
    Wang Y, Pelkonen M, Kaila J (2012) Optimization of landfill leachate management in the aftercare period. Waste Manage Res 30:789–799CrossRefGoogle Scholar
  3. 3.
    Scharff H (2011) Sustainable sanitary landfill celebrates its 80th anniversary. Waste Manage Res 29:888CrossRefGoogle Scholar
  4. 4.
    Heyer K-U, Hupe K, Stegmann R (2005) Landfill aftercare—scope for actions, durations, costs and quantitative criteria for the completion. In: Proceedings Sardinia Waste Management and Landfill Symposium, Sardinia, Italy, p 11Google Scholar
  5. 5.
    Stegmann R, Heyer K-U, Hupe K, Willand A (2006) Deponienachsorge—Handlungsoptionen, Dauer, Kosten und quantitative Kriterien fuer die Entlassung aus der Nachsorge (Landfill Aftercare—Options for Action, Duration, Costs and Quantitative Criteria Regarding the Release from Aftercare) Ufoplan Bericht, Publikationen der Umweltbundesamtes, IFAS HamburgGoogle Scholar
  6. 6.
    Wang Y, Pelkonen M, Kaila J (2012) Effects of temperature on the long-term behavior of waste degradation emissions and post-closure management based on landfill simulators. Open Waste Manag J 5:19–27CrossRefGoogle Scholar
  7. 7.
    Heyer K-U (2003) Emissionsreduzierung in der Deponienachsorge (Reduction of emissions during landfill aftercare) Hamburger Berichte 21, Abfallwirtschaft. Technische Universität Hamburg-Harburg, Verlag Abfall Aktuell, StuttgartGoogle Scholar
  8. 8.
    Andreas L (2000) Langzeitemissionsverhalten von Deponien für Siedlungsabfälle in den neuen Bundesländern (Long-term emissions from MSW landfills in the new federal states). Schriftenreihe des Institutes für Abfallwirtschaft und Altlasten Technische Universität Dresden, Band 14, DresdenGoogle Scholar
  9. 9.
    Ministry of Environmental Protection, China (1998) Standard for pollution control on the landfill site for domestic waste. GB16889-1997, Beijing, ChinaGoogle Scholar
  10. 10.
    Verordnung über Anforderungen an das Einleiten von Abwasser in Gewässer—Abwasserverordnung. Anhang 51, 2001, state May 2013. (German ordinances on leachate discharge limits)Google Scholar
  11. 11.
    Wang Y, Pelkonen M, Kaila J (2011) Cost-saving biological nitrogen removal from strong ammonia landfill leachate. Waste Manage Res 29:797–806CrossRefGoogle Scholar
  12. 12.
    Gromadecki F (2000) Anwendungsorientierte Betriebsoptimierung von Sickerwasserreinigungsanlagen (Application based optimization of the operation of leachate treatment plants). Institut fuer Siedlungswasserwirtschaft, Technische Universität Braunschweig, Heft 65, BraunschweigGoogle Scholar
  13. 13.
    Singh SK, Townsend TG, Mazyck D, Boyer TH (2012) Equilibrium and intra-particle diffusion of stabilized landfill leachate onto micro- and meso-porous activated carbon. Water Res 46:491–499CrossRefGoogle Scholar
  14. 14.
    Ivashechkin P (2006) Elimination of organic trace pollutants from municipal wastewater. Dissertation Technische Hochschule, Aachen, Germany [in German]Google Scholar
  15. 15.
    Stern N (2007) Stern review: the economics of climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. 16.
    Beaven RP, Knox K, Gronow JR, Hjelmar O, Greedy D, Scharff H (2014) A new economic instrument for financing accelerated landfill aftercare. Waste Manag 34:1191–1198CrossRefGoogle Scholar
  17. 17.
    Pelkonen M, Wang Y (2012) Long term leachate management based on anaerobic/aerobic landfill simulator studies. In: Lagerkvist A (ed) Abstract proceedings of 7th intercontinental landfill research symposium, Luleå, pp 103–04Google Scholar
  18. 18.
    Fellner J, Döberl G, Allgaier G, Brunner PH (2009) Comparing field investigations with laboratory models to predict landfill leachate emissions. Waste Manag 29:1844–1851CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Division of Waste Science and TechnologyLuleå University of TechnologyLuleåSweden
  2. 2.Department of Civil and Environmental Engineering, School of EngineeringAalto UniversityAaltoFinland

Personalised recommendations