Enabling the recycling of rare earth elements through product design and trend analyses of hard disk drives

  • Maximilian Ueberschaar
  • Vera Susanne Rotter
SPECIAL FEATURE: ORIGINAL ARTICLE 1st 3R International Scientific Conference (3RINCs 2014)


Hard disk drives consist of a complex mix of various materials. While Aluminum, Copper and Steel are easy to separate, actual recycling processes dilute containing rare earth elements to non-recoverable grades in other material streams. To enable future recycling of these materials an in-depth analysis of hard disk drives from Desktop PCs and Notebooks was carried out. Furthermore, possible recycling strategies for rare earth elements were derived and the recycling potential was assessed. The results show high concentrations of Neodymium (22.9 ± 2.8 %), Praseodymium (2.7 ± 2.2 %) and Dysprosium (1.4 ± 1.5 %) in the magnets. Various types of alloys are applied for different technical or economic reasons. Also a dependency from manufacturing dates was evidenced. Furthermore, Cerium (0.5 %) and Neodymium (0.2 %) were determined in printed circuit boards. Test disassemblies of hard disk drives showed a complicated structure and thereby a difficult access to the NdFeB magnets. This applies explicitly for the spindle motor magnets, which hold the main share of applied Dysprosium. A WEEE collection analysis shows an amount of about 12.7t magnets from hard disk drives from PCs in Germany in 1 year. Put-on-market data predict decreasing shares of hard disk drives from Desktop PCs and significantly increasing amounts of Notebook components in WEEE.


REE Rare earth elements Recovery Recycling Critical elements Hard disk drives Chemical analysis NdFeB magnet Critical metals WEEE 

Supplementary material

10163_2014_347_MOESM1_ESM.docx (62 kb)
Supplementary material 1 (DOCX 62 kb)
10163_2014_347_MOESM2_ESM.docx (77 kb)
Supplementary material 2 (DOCX 76 kb)
10163_2014_347_MOESM3_ESM.docx (1.1 mb)
Supplementary material 3 (DOCX 1119 kb)


  1. 1.
    Chancerel P, Meskers CEM, Hagelüken C, Rotter VS (2009) Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. J Ind Ecol 13:791–810. doi: 10.1111/j.1530-9290.2009.00171.x CrossRefGoogle Scholar
  2. 2.
    Van Schaik A, Reuter MA (2004) The optimization of end-of-life vehicle recycling in the european union. JOM 56:39–43. doi: 10.1007/s11837-004-0180-9 CrossRefGoogle Scholar
  3. 3.
    Reuter MA, Hudson C, van Schaik A, et al. (2013) UNEP (2013) Metal recycling: opportunities, limits, infrastructure, a report of the working group on the global metal flows to the international resource panel, ParisGoogle Scholar
  4. 4.
    Binnemans K, Jones PT, Blanpain B et al (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22. doi: 10.1016/j.jclepro.2012.12.037 CrossRefGoogle Scholar
  5. 5.
    Goonan TG (2011) Rare earth elements—end use and recyclability. Scientific US Geological Survey, RestonGoogle Scholar
  6. 6.
    Schüler D, Buchert M, Liu R, et al. (2011) Rare Earths and their recycling. Öko-Institut e.V., DarmstadtGoogle Scholar
  7. 7.
    Gutfleisch O, Willard Ma, Brück E et al (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23:821–842. doi: 10.1002/adma.201002180 CrossRefGoogle Scholar
  8. 8.
    Buchert M, Koß K (2012) Recycling kritischer Rohstoffe aus Elektronik-Altgeräten. Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV NRW), RecklinghausenGoogle Scholar
  9. 9.
    European Commission (2010) Critical raw materials for the EU. Ad hoc Work Gr Defin Crit raw Mater 1–84Google Scholar
  10. 10.
    Du X, Graedel TE (2011) Global rare Earth in-use stocks in NdFeB permanent magnets. J Ind Ecol 15:836–843. doi: 10.1111/j.1530-9290.2011.00362.x CrossRefGoogle Scholar
  11. 11.
    Chancerel P, Rotter VS, Ueberschaar M et al (2013) Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment. Waste Manag Res 31:3–16. doi: 10.1177/0734242X13499814 CrossRefGoogle Scholar
  12. 12.
    Zepf V (2013) Rare Earth Elements. Vasa. doi: 10.1007/978-3-642-35458-8 Google Scholar
  13. 13.
    Goldman A (1999) Handbook of modern ferromagnetic materials. Kluwer Academic Publishers, Dordrecht, p 649CrossRefGoogle Scholar
  14. 14.
    Rotter VS, Chancerel P, Ueberschaar M (2013) Recycling-oriented product characterization for electric and electronic equipment as a tool to enable recycling of critical metals. TMS 2013 142nd Annu. Meet. ExhibGoogle Scholar
  15. 15.
    Hatch G (2011) Seagate, rare earths and the wrong end of the stick. Technol Met ResGoogle Scholar
  16. 16.
    MetaErden GmbH (2014) Praseodym—Wertentwicklung. Accessed 11 Apr 2014
  17. 17.
    MetaErden GmbH (2014) Neodym—Wertentwicklung. Accessed 11 Apr 2014
  18. 18.
    Kim JW, Kim SH, Song SY, Kim Y Do (2013) Nd–Fe–B permanent magnets fabricated by low temperature sintering process. J Alloys Compd 551:180–184. doi: 10.1016/j.jallcom.2012.10.058 CrossRefGoogle Scholar
  19. 19.
    Nemoto T, Tanaka Y, Tsujioka S et al (2011) Resource recycling for sustainable industrial development. Hitachi Rev 60:335–341Google Scholar
  20. 20.
    Zakotnik M, Harris IR, Williams AJ (2009) Multiple recycling of NdFeB-type sintered magnets. J Alloys Compd 469:314–321. doi: 10.1016/j.jallcom.2008.01.114 CrossRefGoogle Scholar
  21. 21.
    Zakotnik M, Devlin E, Harris IR, Williams AJ (2006) Hydrogen decrepitation and recycling of NdFeB-type sintered magnets. J Iron Steel Res Int 13:289–295. doi: 10.1016/S1006-706X(08)60197-1 CrossRefGoogle Scholar
  22. 22.
    Zakotnik M, Harris IR, Williams AJ (2008) Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing process. J Alloys Compd 450:525–531. doi: 10.1016/j.jallcom.2007.01.134 CrossRefGoogle Scholar
  23. 23.
    Ishioka K, Matsumiya M, Ishii M, Kawakami S (2014) Development of energy-saving recycling process for rare earth metals from voice coil motor by wet separation and electrodeposition using metallic-TFSA melts. Hydrometallurgy 144–145:186–194. doi: 10.1016/j.hydromet.2014.02.007 CrossRefGoogle Scholar
  24. 24.
    Elwert T, Goldmann D (2013) Entwicklung eines hydrometallurgischen Recyclingverfahrens für NdFeB- Magnete. Herstellung und Recycl. von Technol. H. 133 der Schriftenr. der GDMB Gesellschaft der Metall. und Bergleute e.V. Fachausschuss für Metallurgische Aus- und Weiterbildung der GDMB, Clausthal-Zellerfeld, pp 81–96Google Scholar
  25. 25.
    Rabatho JP, Tongamp W, Takasaki Y et al (2012) Recovery of Nd and Dy from rare earth magnetic waste sludge by hydrometallurgical process. J Mater Cycles Waste Manag 15:171–178. doi: 10.1007/s10163-012-0105-6 CrossRefGoogle Scholar
  26. 26.
    Takeda O, Okabe TH, Umetsu Y (2006) Recovery of neodymium from a mixture of magnet scrap and other scrap. J Alloys Compd 408–412:387–390. doi: 10.1016/j.jallcom.2005.04.094 CrossRefGoogle Scholar
  27. 27.
    Takeda O, Okabe TH, Umetsu Y (2004) Phase equilibrium of the system Ag–Fe–Nd, and Nd extraction from magnet scraps using molten silver. J Alloys Compd 379:305–313. doi: 10.1016/j.jallcom.2004.02.038 CrossRefGoogle Scholar
  28. 28.
    Chancerel P, Rotter S (2009) Recycling-oriented characterization of small waste electrical and electronic equipment. Waste Manag 29:2336–2352. doi: 10.1016/j.wasman.2009.04.003 CrossRefGoogle Scholar
  29. 29.
    Fifield F, Haines P (2000) Environmental analytical chemistry, 2nd, April. Wiley-Blackwell, New YorkGoogle Scholar
  30. 30.
    Arruda MAZA (2007) Trends in sample preparation. Nova Science Publishers Inc, New YorkGoogle Scholar
  31. 31.
    stiftung elektro-altgeräte register (2014) Jahres-Statistik-Meldung. Accessed 19 Mar 2014
  32. 32.
    stiftung elektro-altgeräte register (2014) Rücknahmemengen je Sammelgruppe. Accessed 19 Mar 2014
  33. 33.
    Bundesverband Technik des Einzelhandels e.V. (BVT) (2014) Consumer Electronicmarkt Index Deutschland (CEMIX) 2004–2014. KölnGoogle Scholar
  34. 34.
    Wang F, Huisman J, Meskers CEM et al (2012) The Best-of-2-Worlds philosophy: developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies. Waste Manag 32:2134–2146. doi: 10.1016/j.wasman.2012.03.029 CrossRefGoogle Scholar
  35. 35.
    Xu Y, Chumbley L, Laabs F (1999) Liquid metal extraction of Nd from NdFeB magnet scrapGoogle Scholar
  36. 36.
    Hong F (2006) Rare Earth: production, Trade and Demand. J Iron Steel Res Int 13:33–38. doi: 10.1016/S1006-706X(08)60158-2 CrossRefGoogle Scholar
  37. 37.
    Rademaker JH, Kleijn R, Yang Y (2013) Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling. Environ Sci Technol 47:10129–10136. doi: 10.1021/es305007w Google Scholar
  38. 38.
    Wang F, Huisman J, Stevels A, Baldé CP (2013) Enhancing e-waste estimates: improving data quality by multivariate input-output analysis. Waste Manag 33:2397–2407. doi: 10.1016/j.wasman.2013.07.005 CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Environmental TechnologyTechnische Universität BerlinBerlinGermany

Personalised recommendations