Advertisement

Neural Switch Asymmetry in Feature-Based Auditory Attention Tasks

  • Susan A. McLaughlin
  • Eric Larson
  • Adrian K. C. LeeEmail author
Research Article
  • 37 Downloads

Abstract

Active listening involves dynamically switching attention between competing talkers and is essential to following conversations in everyday environments. Previous investigations in human listeners have examined the neural mechanisms that support switching auditory attention within the acoustic featural cues of pitch and auditory space. Here, we explored the cortical circuitry underlying endogenous switching of auditory attention between pitch and spatial cues necessary to discern target from masker words. Because these tasks are of unequal difficulty, we expected an asymmetry in behavioral switch costs for hard-to-easy versus easy-to-hard switches, mirroring prior evidence from vision-based cognitive task-switching paradigms. We investigated the neural correlates of this behavioral switch asymmetry and associated cognitive control operations in the present auditory paradigm. Behaviorally, we observed no switch-cost asymmetry, i.e., no performance difference for switching from the more difficult attend-pitch to the easier attend-space condition (P→S) versus switching from easy-to-hard (S→P). However, left lateral prefrontal cortex activity, correlated with improved performance, was observed during a silent gap period when listeners switched attention from P→S, relative to switching within pitch cues. No such differential activity was seen for the analogous easy-to-hard switch. We hypothesize that this neural switch asymmetry reflects proactive cognitive control mechanisms that successfully reconfigured neurally-specified task parameters and resolved competition from other such “task sets,” thereby obviating the expected behavioral switch-cost asymmetry. The neural switch activity observed was generally consistent with that seen in cognitive paradigms, suggesting that established cognitive models of attention switching may be productively applied to better understand similar processes in audition.

Keywords

auditory attention active listening neural switch asymmetry dorsolateral prefrontal cortex (DLPFC) MEG EEG 

Notes

Funding Information

This research was supported by National Institutes of Health Grant R01 DC013260 to AKCL.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Ahveninen J, Huang S, Belliveau JW, Chang W-T, Hämäläinen M (2013) Dynamic oscillatory processes governing cued orienting and allocation of auditory attention. J Cogn Neurosci 25(11):1926–1943Google Scholar
  2. Alho K, Salmi J, Koistinen S, Salonen O, Rinne T (2015) Top-down controlled and bottom-up triggered orienting of auditory attention to pitch activate overlapping brain networks. Brain Res 1626(c):136–145.  https://doi.org/10.1016/j.brainres.2014.12.050 Google Scholar
  3. Allport A, Wylie G (2000) Task switching, stimulus-response bindings, and negative priming. In: Monsell SS, Diver J (eds) Control of cognitive processes: attention and performance XVIII. MIT Press, Cambridge, pp 35–70Google Scholar
  4. Allport A, Styles EA, Hsieh S (1994) Shifting intentional set: exploring the dynamic control of tasks. In: Umilta C, Moscovitch M (eds) Attention and performance XV: conscious and nonconscious information processing. MIT Press, Cambridge, pp 421–452Google Scholar
  5. Badre D, Wagner AD (2005) Frontal lobe mechanisms that resolve proactive interference. Cereb Cortex 15(12):2003–2012.  https://doi.org/10.1093/cercor/bhi075 Google Scholar
  6. Barton JJS, Greenzang C, Hefter R, Edelman J, Manoach DS (2006) Switching, plasticity, and prediction in a saccadic task-switch paradigm. Exp Brain Res 168:76–87Google Scholar
  7. Boersma P, Weenik D (2009) Praat: doing phonetics by computer, version 5.1.05. University of Amsterdam, AmsterdamGoogle Scholar
  8. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10(4):433–436Google Scholar
  9. Bronkhorst AW (2015) The cocktail-party problem revisited: early processing and selection of multi-talker speech. Atten Percept Psychophysiol 77(5):1465–1487Google Scholar
  10. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3):306–324Google Scholar
  11. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9(2):179–194Google Scholar
  12. De Baene W, Brass M (2014) Dissociating strategy-dependent and independent components in task preparation. Neuropsychologia 62:331–340Google Scholar
  13. De Baene W, Albers AM, Brass M (2012) The what and how components of cognitive control. Neuroimage 63(1):203–211.  https://doi.org/10.1016/j.neuroimage.2012.06.050 Google Scholar
  14. Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25(1):22–34.  https://doi.org/10.1002/hbm.20127 Google Scholar
  15. Dosenbach NUF, Visscher KM, Plamer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlagger BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812Google Scholar
  16. Dosenbach NUF, Fair DA, Cohen AL, Schlagger BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trens Cogn Sci 12(3):99–105Google Scholar
  17. Eckert MA, Teubner-Rhodes S, Vaden KI (2016) Is listening in noise worth it? The neurobiology of speech recognition in challenging listening conditions. Ear Hear 37(Suppl 1):101S–110S.  https://doi.org/10.1097/AUD.0000000000000300 Google Scholar
  18. Fischl B, Sereno MI, Tootell RB, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284Google Scholar
  19. Gange JP, Besser J, Lemke U (2017) Behavioral assessment of listening effort using a dual-task paradigm. Trends Hear 21:1–25Google Scholar
  20. Gilbert SJ, Shallice T (2002) Task switching: a PDP model. Cogn Psychol 44(3):297–337Google Scholar
  21. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536(7615):171–178.  https://doi.org/10.1038/nature18933 Google Scholar
  22. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hämäläinen M (2013) MEG and EEG data analysis with MNE-python. Front Neurosci 7:267.  https://doi.org/10.3389/fnins.2013.00267 Google Scholar
  23. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hämäläinen M (2014) MNE software for processing MEG and EEG data. Neuroimage 86:446–460.  https://doi.org/10.1016/j.neuroimage.2013.10.027 Google Scholar
  24. Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32(1):35–42Google Scholar
  25. Hämäläinen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36(2):165–171.  https://doi.org/10.1109/10.16463 Google Scholar
  26. Hyafil A, Summerfield C, Koechlin E (2009) Two mechanisms for task switching in the prefrontal cortex. J Neurosci 29(16):5135–5142.  https://doi.org/10.1523/JNEUROSCI.2828-08.2009 Google Scholar
  27. Kahneman D (1973) Attention and effort. Prentice-Hall, Englewood CliffsGoogle Scholar
  28. Karayanidis F, Jamadar S, Ruge H, Phillips N, Heathcote A, Forstmann BU (2010) Advance preparation in task-switching: converging evidence from behavioral, brain activation, and model-based approaches. Front Psychol 1:1–13Google Scholar
  29. Kidd G Jr, Arbogast TL, Mason CR, Gallun FJ (2005) The advantage of knowing where to listen. J Acoust Soc Am 118(6):3804–3815Google Scholar
  30. Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, Philipp AM, Koch I (2010) Control and interference in task switching–a review. Psychol Bull 136(5):849–874.  https://doi.org/10.1037/a0019842 Google Scholar
  31. Kim C, Cilles SE, Johnson NF, Gold BT (2012) Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum Brain Mapp 33(1):130–142.  https://doi.org/10.1002/hbm.21199 Google Scholar
  32. Koch I, Lawo V, Fels J, Vorländer M (2011) Switching in the cocktail party: exploring intentional control of auditory selective attention. J Exp Psychol Hum Percept Perform 37(4):1140–1147.  https://doi.org/10.1037/a0022189 Google Scholar
  33. Kodali VN, Jacobson JL, Lindinger NM, Dodge NC, Molteno CD, Meintjes EM, Jacobson SW (2017) Differential recruitment of brain regions during response inhibition in children prenatally exposed to alcohol. Alcohol Clin Exp Res 41(2):334–344.  https://doi.org/10.1111/acer.13307 Google Scholar
  34. Konishi S, Jimura K, Asari T, Miyashita Y (2003) Transient activation of superior prefrontal cortex during inhibition of cognitive set. J Neurosci 23(21):7776–7782Google Scholar
  35. Larson E, Lee AKC (2013a) The cortical dynamics underlying effective switching of auditory spatial attention. Neuroimage 64:365–370.  https://doi.org/10.1016/j.neuroimage.2012.09.006 Google Scholar
  36. Larson E, Lee AKC (2013b) Influence of preparation time and pitch separation in switching of auditory attention between streams. J Acoust Soc Am 134(2):EL165–EL171.  https://doi.org/10.1121/1.4812439 Google Scholar
  37. Larson E, Lee AKC (2014) Switching auditory attention using spatial and non-spatial features recruits different cortical networks. Neuroimage 84:681–687.  https://doi.org/10.1016/j.neuroimage.2013.09.061 Google Scholar
  38. Lavric A, Mizon GA, Monsell S (2008) Neurophysiological signature of effective anticipatory task-set control: a task-switching investigation. Eur J Neurosci 28(5):1016–1029Google Scholar
  39. Lawo V, Fels J, Oberem J, Koch I (2014) Intentional attention switching in dichotic listening: exploring the efficiency of nonspatial and spatial selection. Q J Exp Psychol (Hove) 67(10):2010–2024.  https://doi.org/10.1080/17470218.2014.898079 Google Scholar
  40. Lee AKC, Larson E, Maddox RK (2012) Mapping cortical dynamics using simultaneous MEG/EEG and anatomically-constrained minimum-norm estimates: an auditory attention example. J Vis Exp (68):e4262.  https://doi.org/10.3791/4262
  41. Lee AKC, Rajaram S, Xia J, Bharadwaj H, Larson E, Hämäläinen MS, Shinn-Cunningham BG (2013) Auditory selective attention reveals preparatory activity in different cortical regions for selection based on source location and source pitch. Front Neurosci 6:190.  https://doi.org/10.3389/fnins.2012.00190 Google Scholar
  42. Liu H, Tanaka N, Stufflebeam S, Ahlfors S, Hämäläinen M (2010) Functional mapping with simultaneous MEG and EEG. J Vis Exp (40):1668.  https://doi.org/10.3791/1668
  43. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1):177–190Google Scholar
  44. McCloy DR, Lau BK, Larson E, Pratt KAI, Lee AKC (2017) Pupillometry shows the effort of auditory attention switching. J Acoust Soc Am 141(4):2440–2451Google Scholar
  45. Meiran N (1996) Reconfiguration of processing mode prior to task performance. J Exp Psychol Learn Mem Cogn 22(6):1423–1442Google Scholar
  46. Meiran N (2010) Task switching: mechanisms underlying rigid vs. flexible self-control. In: Hassin RR, Ochsner KN, Trope Y (eds) Self-control in society, mind, and brain, XII. Oxford University Press, Oxford, pp 202–220Google Scholar
  47. Molins A, Stufflebeam SM, Brown EN, Hämäläinen MS (2008) Quantification of the benefit from integrating MEG and EEG data in minimum L2-norm estimation. Neuroimage 42(3):1069–1077.  https://doi.org/10.1016/j.neuroimage.2008.05.064 Google Scholar
  48. Monsell S (2003) Task switching. Trends Cogn Sci 7(3):134–140Google Scholar
  49. Mueller SC, Swainson R, Jackson GM (2009) ERP indices of persisting and current inhibitory control: a study of saccadic task switching. Neuroimage 45(1):191–197Google Scholar
  50. Nenonen J, Taulu S, Kajola M, Ahonen A (2007) Total information extracted from MEG measurements. Int Congr Ser 1300:245–248.  https://doi.org/10.1016/j.ics.2007.01.058 Google Scholar
  51. O’Conaill CR, Malisza KL, Buss JL, Bolster RB, Clancy C, de Gervai PD, Chudley AE, Longstaffe S (2015) Visual search for feature conjunctions: an fMRI study comparing alcohol-related neurodevelopmental disorder (ARND) to ADHD. J Neurodev Disord 7(1):10.  https://doi.org/10.1186/s11689-015-9106-9 Google Scholar
  52. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113Google Scholar
  53. Phillip AM, Gade M, Koch I (2007) Inhibitory processes in language switching? Evidence from switching language-defined response sets. Eur J Cogn Psychol 19:395–416Google Scholar
  54. Phillip AM, Weidner R, Koch I, Fink GR (2013) Differential roles of inferior frontal and inferior parietal cortex in task switching: evidence from stimulus-categorization switching and response-modality switching. Hum Brain Mapp 34(8):1910–1920.  https://doi.org/10.1002/hbm.22036 Google Scholar
  55. Pichora-Fuller MK, Kramer SE, Eckert MA, Edwards B, Hornsby BWY, Humes LE, Lemke U, Lunner T, Matthen M, Mackersie CL, Naylor G, Phillips NA, Richter M, Rudner M, Sommers MS, Tremblay KL, Wingfield A (2016) Hearing impairment and cognitive energy: the framework for understanding effortful listening (FUEL). Ear Hear 37(Suppl1):5S–27SGoogle Scholar
  56. Power JD, Petersen SE (2013) Control-related systems in the human brain. Curr Opin Neurobiol 23(2):223–228.  https://doi.org/10.1016/j.conb.2012.12.009 Google Scholar
  57. Ridgway R, Litvak V, Flandin G, Friston KJ, Penny WD (2012) The problem of low variance voxels in statistical parametric mapping; a new hat avoids a 'haircut. Neuroimage 59(3):2131–2141Google Scholar
  58. Rogers RD, Monsell S (1995) Costs of a predictable switch between simple cognitive tasks. J Exp Psychol Gen 124:207–231Google Scholar
  59. Ruge H, Jamadar S, Zimmermann U, Karayanidis F (2013) The many faces of preparatory control in task switching: reviewing a decade of fMRI research. Hum Brain Mapp 34(1):12–35.  https://doi.org/10.1002/hbm.21420 Google Scholar
  60. Salmi J, Rinne T, Koistinen S, Salonen O, Alho K (2009) Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention. Brain Res 1286:155–164.  https://doi.org/10.1016/j.brainres.2009.06.083 Google Scholar
  61. Sharon D, Hämäläinen MS, Tootell RBH, Halgren E, Belliveau JW (2007) The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. Neuroimage 36(4):1225–1235.  https://doi.org/10.1016/j.neuroimage.2007.03.066 Google Scholar
  62. Shinn-Cunningham BG, Kopco N, Martin T (2005) Localizing nearby sound sources in a classroom: binaural room impulse response. J Acoust Soc Am 117(5):3100–3115Google Scholar
  63. Shinn-Cunningham BG, Best V, Lee AKC (2017) Auditory object formation and selection. In: Middlebrooks JC, Simon JZ, Popper AN, Fay RR (eds) The auditory system at the cocktail party. Springer International Publishing, Berlin, pp 7–40Google Scholar
  64. Shomstein S, Yantis S (2006) Parietal cortex mediates voluntary control of spatial and nonspatial auditory attention. J Neurosci 26(2):435–439.  https://doi.org/10.1523/JNEUROSCI.4408-05.2006 Google Scholar
  65. Stelzel C, Basten U, Fiebach CJ (2011) Functional connectivity separates switching operations in the posterior lateral frontal cortex. J Cogn Neurosci 23(11):3529–3539.  https://doi.org/10.1162/jocn_a_00062 Google Scholar
  66. Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys 97:124905Google Scholar
  67. Uusitalo MA, Ilmoniemi RJ (1997) Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35(2):135–140Google Scholar
  68. Vandierendonck A, Liefooghe B, Verbruggen F (2010) Task switching: interplay of reconfiguration and interference control. Psychol Bull 136(4):601–626.  https://doi.org/10.1037/a0019791 Google Scholar
  69. Ware AL, Infante MA, O’Brien JW, Tapert SF, Jones KL, Riley EP, Mattson SN (2015) An fMRI study of behavioral response inhibition in adolescents with and without histories of heavy prenatal alcohol exposure. Behav Brain Res 278:137–146.  https://doi.org/10.1016/j.bbr.2014.09.037 Google Scholar
  70. Wylie G, Allport A (2000) Task switching and the measurement of ‘switch costs’. Psychol Res 63(3–4):212–233Google Scholar
  71. Yeung N, Monsell S (2003) Switching between tasks of unequal familiarity: the role of stimulus-attribute and response-set selection. J Exp Psychol Hum Percept Perform 29(2):455–469Google Scholar
  72. Yeung N, Nystrom LE, Aronson JA, Cohen JD (2006) Between-task competition and cognitive control in task switching. J Neurosci 26(5):1429–1438.  https://doi.org/10.1523/JNEUROSCI.3109-05.2006 Google Scholar

Copyright information

© Association for Research in Otolaryngology 2019

Authors and Affiliations

  1. 1.Institute for Learning and Brain SciencesUniversity of WashingtonSeattleUSA
  2. 2.Department of Speech and Hearing SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations