A New Model for Congenital Vestibular Disorders

  • Sigmund J. Lilian
  • Hayley E. Seal
  • Anastas Popratiloff
  • June C. Hirsch
  • Kenna D. PeusnerEmail author
Research Article


Many developmental disorders of the inner ear are manifested clinically as delayed motor development and challenges in maintaining posture and balance, indicating involvement of central vestibular circuits. How the vestibular circuitry is rewired in pediatric cases is poorly understood due to lack of a suitable animal model. Based on this, our lab designed and validated a chick embryo model to study vestibular development in congenital vestibular disorders. The developing inner ear or “otocyst” on the right side of 2-day-old chick embryos (E2) was surgically rotated 180° in the anterior–posterior axis, forming the “anterior–posterior axis rotated otocyst chick” or ARO chick. The ARO chick has a reproducible pathology of a sac with truncated or missing semicircular canals. A sac is the most common inner ear defect found in children with congenital vestibular disorders. In E13 ARO chicks, the sac contained all three cristae and maculae utriculi and sacculi, but the superior crista and macula utriculi were shortened in anterior–posterior extent. Also, the number of principal cells of the tangential vestibular nucleus, a major avian vestibular nucleus, was decreased 66 % on the rotated side. After hatching, no difference was detected between ARO and normal chicks in their righting reflex times. However, unlike normal chicks, ARO hatchlings had a constant, right head tilt, and after performing the righting reflex, ARO chicks stumbled and walked with a widened base. Identifying the structure and function of abnormally developed brain regions in ARO chicks may assist in improving treatments for patients with congenital vestibular disorder.


otocyst rotation chick vestibular nuclei 



We would like to acknowledge Ms. Lakshmi Kammili of GWU Pathology Core Laboratory for processing the chick specimens for paraffin embedding, tissue sectioning, and Nissl staining.

Funding information

This work was supported in part by research funds from the GWU Department of Anatomy and Cell Biology and GWU Luther Rice Undergraduate Fellowships (SJL and HES).

Compliance with Ethical Standards

Animal protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the George Washington University. The experiments also conform to the International Guidelines for the Ethical Treatment of Animals.


  1. Abadie V, Wiener-Vacher S, Morisseau-Durand M-P, Poree C, Amiel J, Amanou L, Peigne C, Lyonet S, Manach Y (2000) Vestibular anomalies in CHARGE syndrome: investigations on and consequences for postural development. Eur J Pediatr 159:569–574CrossRefPubMedGoogle Scholar
  2. Abu-Amero KK, Kondkar AA, Alorainy IA, Khan AO, Al-Enazy LA, Oystreck DT, Bosley TM (2014) Xq26.3 microdeletion in a male with Wildervanck syndrome. Ophthalmic Genet 35:18–24CrossRefPubMedGoogle Scholar
  3. Adams ME, Hurd EA, Beyer LA, Martin DM (2007) Defects in vestibular sensory epithelia and innervation in mice with loss of Chd7 function: implications for human CHARGE syndrome. J Comp Neurol 504:519–532CrossRefPubMedGoogle Scholar
  4. Aldrich EM, Peusner KD (2002) Vestibular compensation after ganglionectomy: ultrastructural study of the tangential vestibular nucleus and behavioral study of the hatchling chick. J Neurosci Res 67:122–138CrossRefPubMedGoogle Scholar
  5. Alsina BA, Giraldez F, Pujades C (2009) Patterning and cell fate in ear development. Int J Dev Biol 53:1503–1513CrossRefGoogle Scholar
  6. Battisti AC, Fekete DM (2008) Slits and Robos in the developing chicken inner ear. Dev Dyn 237:476–484CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beraneck M, McKee JL, Aleisa M, Cullen KE (2008) Asymmetric recovery in cerebellar-deficient mice following unilateral labyrinthectomy. J Neurophysiol 100:945–958CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bisdas S, Lenarz M, Lenarz T, Becker H (2005) Inner ear abnormalities in patients if Goldenhar syndrome. Otol Neurotol 26:398–404CrossRefPubMedGoogle Scholar
  9. Bissonnette JP, Fekete DM (1996) Standard atlas of the gross anatomy of the developing inner ear of the chicken. J Comp Neurol 368:620–630CrossRefPubMedGoogle Scholar
  10. Blake KD, Hatshorne TS, Lawand C, Dailor AN, Thelin JW (2008) Cranial nerve manifestations in CHARGE syndrome. Am J Med Genet A 146A:585–592CrossRefPubMedGoogle Scholar
  11. Boulland J-L, Hlasi G, Kasumacic N, Glover JC (2010) Xenotransplantation of human stem cells into the chicken embryo. J Vis Exp (41):2071Google Scholar
  12. Brigande JV, Kiernan AE, Gao X, Iten LE, Fekete DM (2000) Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? Proc Natl Acad Sci 97:11700–11706CrossRefPubMedGoogle Scholar
  13. Brown D (2011) Consequences of vestibular dysfunction. In: Hartshorne TS, Hefner MA, Davenport SLH, Thelin JW (eds) CHARGE syndrome. Plural Publishing Inc., San DiegoGoogle Scholar
  14. Cox RG, Peusner KD (1990a) Horseradish peroxidase labeling of the efferent and afferent pathways of the avian tangential vestibular nucleus. J Comp Neurol 296:324–341CrossRefPubMedGoogle Scholar
  15. Cox RG, Peusner KD (1990b) Horseradish peroxidase labeling of the central pathways in the medulla of the ampullary nerves in the chicken, Gallus gallus. J Comp Neurol 297:564–581CrossRefPubMedGoogle Scholar
  16. de Geus CM, Free RH, Verbist BM, Sival DA, Blake KD, Meiners LC, van Ravenswaaij-Arts CMA (2017) Guidelines in CHARGE syndrome and the missing link: cranial imaging. Am J Med Genet 175C:450–464CrossRefGoogle Scholar
  17. Elliott KL, Houston DW, Fritzsch B (2015a) Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons. Dev Neurobiol 75:1339–1351CrossRefPubMedPubMedCentralGoogle Scholar
  18. Elliott KL, Houston DW, Fritzsch B (2015b) Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs. Sci Rep 5:8338CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elmaleh-Bergès M, Baumann C, Noël-Pétroff N, Sekkal A, Couloigner V, Devriendt K, Wilson M, Marlin S, Sebag G, Pingault V (2013) Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations. Am J Neuroradiol 34:1257–1263CrossRefPubMedGoogle Scholar
  20. Feng W, Kawauchi D, Körkel-Qu H, Deng H, Serger E, Sieber L, Lieberman JA, Jimeno-González S, Lambo S, Hanna BS, Harim Y, Jansen M, Neuerburg A, Friesen O, Zuckermann M, Rajendran V, Gronych J, Ayrault O, Korshunov A, Jones DT, Kool M, Northcott PA (2017) Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation program. Nat Commun 8:14758CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fink DJ, Morest DK (1977) Formation of synaptic endings by colossal fibers in the vestibular epithelium of the chick embryo. Neuroscience 2:229–252CrossRefPubMedGoogle Scholar
  22. Gage PJ, Hurd EA, Martin DM (2015) Mouse models for the dissection of CHD7 functions in eye development and the molecular basis for ocular defects in CHARGE syndrome. Invest Ophthalmol Vis Sci 56:7923–7930CrossRefPubMedPubMedCentralGoogle Scholar
  23. Goto F, Straka H, Dieringer N (2000) Expansion of afferent vestibular signals after the section of one of the vestibular nerve branches. J Neurophysiol 84:581–584CrossRefPubMedGoogle Scholar
  24. Green GE, Huq FS, Emery SB, Mukherji SK, Martin DM (2014) CHD7 mutations and CHARGE syndrome in semicircular canal dysplasia. Otol Neurotol 35:1466–1470CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hale CL, Niederriter AN, Green GE, Martin DM (2016) Atypical phenotypes associated with pathogenic CHD7 variants and a proposal for broadening CHARGE syndrome clinical diagnostic criteria. Am J Med Genet A 170:344–354CrossRefGoogle Scholar
  26. Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92CrossRefGoogle Scholar
  27. Harrison RG (1935) Relations of symmetry in the developing ear of amblystoma punctatum. Proc Natl Acad Sci 22:238–247CrossRefGoogle Scholar
  28. Hurd EA, Poucher HK, Cheng K, Raphael Y, Martin DM (2010) The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development 137:3139–3150CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hurd EA, Micucci JA, Reamer EN, Martin DM (2012) Delayed fusion and altered gene expression contribute to semicircular canal defects in Chd7 deficient mice. Mech Dev 129:308–323CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hutson MR, Lewis JE, Nguyen-Luu D, Lindberg KH, Barald KF (1999) Expression of Pax2 and patterning of the chick inner ear. J Neurocytol 28:795–807CrossRefPubMedGoogle Scholar
  31. Jeffery N, Spoor F (2004) Prenatal growth and development of the modern human labyrinth. J Anat 204:71–92CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jongmans MCJ, Admiraal RJ, van der Donk KP, Vissers LELM, Baas AF, Kapusta L, van Hagen JM, Donnai D, de Ravel TJ, Veltman JA, Geurts van Kessel A, De Vries BBA, Brunner HG, Hoefsloot LH, van Ravenswaaij CMA (2006) CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. Med Genet 43:306–314CrossRefGoogle Scholar
  33. Joshi VM, Shantanu KN, Kishore GR, Reddy KJ, Kumar ECV (2012) CT and MRI imaging of the inner ear and brain with children with congenital sensorineural hearing loss. RadioGraphics 32:683–698CrossRefPubMedGoogle Scholar
  34. Karpinski BA, Maynard TM, Fralish MS, Nuwayhid S, Zohn IE, Moody SA, LaMantia AS (2014) Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. Dis Model Mech 7:245–257CrossRefPubMedGoogle Scholar
  35. Kiernan AE (2006) The paintfill method as a tool for analyzing the three-dimensional structure of the inner ear. Brain Res 1091:270–276CrossRefPubMedGoogle Scholar
  36. Laclef C, Souil E, Demignon J, Maire P (2003) Thymus, kidney, and craniofacial abnormalities in Six1 deficient mice. Mech Dev 120:669–679CrossRefPubMedGoogle Scholar
  37. Lalani SR, Hefner MA, Belmont JW, Davenport SLH (2006) CHARGE syndrome. In: Adams MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Mefford HC, Stephens K, Amemiya A, Ledbetter N (eds) GeneReviews (Internet). University of Washington, Seattle, Seattle 1993–2017Google Scholar
  38. Lambert FM, Beck JC, Baker R, Straka H (2008) Semicircular canal size determines the developmental onset of angular vestibuloocular reflexes in larval Xenopus. J Neurosci 28:8086–8095CrossRefPubMedPubMedCentralGoogle Scholar
  39. Layman WS, Hurd EA, Martin DM (2010) Chromodomain proteins in development: lessons from CHARGE syndrome. Clin Genet 78:11–20CrossRefPubMedPubMedCentralGoogle Scholar
  40. Levi-Montalcini R (1949) The development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracks. J Comp Neurol 91:209–241CrossRefPubMedGoogle Scholar
  41. Li C-M, Hoffman HJ, Ward BK, Cohen HS, Rine RM (2016) Epidemiology of dizziness and balance problems in children in the United States: a population–based study. J Pediatr 171:240–247CrossRefPubMedGoogle Scholar
  42. Luna LG (1968) Manual of histologic staining methods of the Armed Forces Institute of Pathology, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  43. Martin P, Swanson GJ (1993) Descriptive and experimental analysis of the epithelial remodelings that control semicircular canal formation. Dev Biol 159:549–558CrossRefPubMedGoogle Scholar
  44. Micucci JA, Layman WS, Hurd EA, Sperry ED, Frank SF, Durham MA, Swiderski DL, Skidmore JM, Scacheri PC, Raphael Y, Martin DM (2014) CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome. Hum Mol Genet 15:434–448CrossRefGoogle Scholar
  45. Morimoto AK, Wiggins IIIRH, Hudgins PA, Hedlund GL, Hamilton B, Mukherji SK, Telian SA, Harnsberger HR (2006) Absent semicircular canals in CHARGE syndrome: radiologic spectrum of findings. Am J Neuroradiol 27:1663–1671PubMedGoogle Scholar
  46. Naficy S, Shepard NT, Telian SA (1997) Multiple temporal bone anomalies associated with Noonan syndrome. Otolaryngol Head Neck Surg 116:265–267CrossRefPubMedGoogle Scholar
  47. Petralia RS, Peusner KD (1991) The earliest ultrastructural development of the tangential vestibular nucleus in the chick embryo. J Comp Neurol 310:82–93CrossRefPubMedGoogle Scholar
  48. Peusner KD (1984) The development of synapses and “spoon” synaptic terminal space in the tangential vestibular nucleus: a quantitative electron microscope study. J Comp Neurol 230:372–385CrossRefPubMedGoogle Scholar
  49. Peusner K (2014) Development of the central vestibular system. In: Romand R, Varella-Nieto I (eds) Development of auditory and vestibular systems, 4th edn. Elsevier, OxfordGoogle Scholar
  50. Peusner KD, Morest DK (1977a) The neuronal architecture and topography of the nucleus vestibularis tangentialis in the late chick embryo. Neuroscience 2:189–207CrossRefPubMedGoogle Scholar
  51. Peusner KD, Morest DK (1977b) A morphological study of neurogenesis in the nucleus vestibularis tangentialis of the check embryo. Neuroscience 2:209–227CrossRefPubMedGoogle Scholar
  52. Peusner KD, Morest DK (1977c) Neurogenesis in the nucleus vestibularis tangentialis of the chick embryo in the absence of the primary afferent fibers. Neuroscience 2:253–270CrossRefPubMedGoogle Scholar
  53. Popratiloff A, Peusner KD (2007) Otolith fibers and terminals in chick vestibular nuclei. J Comp Neurol 502:19–37CrossRefPubMedGoogle Scholar
  54. Popratiloff A, Peusner KD (2011) GABA and glycine immunolabeling in the chicken tangential nucleus. Neuroscience 175:328–343CrossRefPubMedGoogle Scholar
  55. Popratiloff A, Wang Y-Z, Petralia RS, Giaume C, Peusner KD (2004) AMPA receptor subunits expression in chick vestibular nucleus neurons. J Neurosci Res 76:662–677CrossRefPubMedGoogle Scholar
  56. Reis LH, Gama LT, Chaveriro Soares M (1997) Effects of short storage conditions and broiler breeder age on hatchability, hatching time, and chick weights. Poult Sci 76:1459–1466CrossRefPubMedGoogle Scholar
  57. Rine RM, Dannenbaum E, Szabo J (2016) 2015 section on pediatric knowledge translation lecture: pediatric vestibular-related impairments. Pediatr Phys Ther 28:2–6CrossRefPubMedGoogle Scholar
  58. Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101CrossRefGoogle Scholar
  59. Sando I, Orita Y, Miura M, Balaban CD (2001) Vestibular abnormalities in congenital disorders. Ann N Y Acad Sci 942:15–24CrossRefPubMedGoogle Scholar
  60. Sanlaville D, Verloes A (2007) CHARGE syndrome: an update. Eur J Hum Genet 15:389–399CrossRefPubMedGoogle Scholar
  61. Satar B, Mukherji SK, Telian SA (2003) Congenital aplasia of the semicircular canals. Otol Neurotol 24:437–446CrossRefPubMedGoogle Scholar
  62. Shao M, Hirsch JC, Peusner KD (2006) Emergence of action potential generation and synaptic transmission in vestibular nucleus neurons. J Neurophysiol 96:1215–1226CrossRefPubMedGoogle Scholar
  63. Shao M, Popratiloff A, Yi J, Lerner A, Hirsch JC, Peusner KD (2009) Adaptation of chicken vestibular nucleus neuron to unilateral vestibular ganglionectomy. Neuroscience 161:988–1007CrossRefPubMedGoogle Scholar
  64. Shao M, Hirsch JC, Peusner KD (2012a) Plasticity of spontaneous excitatory and inhibitory synaptic activity in morphologically defined vestibular nuclei neurons during early vestibular compensation. J Neurophysiol 107:29–41CrossRefPubMedGoogle Scholar
  65. Shao M, Reddaway R, Hirsch JC, Peusner KD (2012b) Presynaptic GABAB receptors decrease neurotransmitter release in vestibular nuclei neurons during vestibular compensation. Neuroscience 223:333–354CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vesseur AC, Verbist BM, Westerlaan HE, Kloostra FJJ, Admiraal RJC, can Ravenswaaij-Arts CMA, Free RH, Mylanus EAM (2016) CT findings of the temporal bone in CHARGE syndrome: aspects of importance in cochlear implant surgery. Eur Arch Otorhinolaryngol 273:4225–4240CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vuorela P, Ala-Mello S, Saloranta C, Penttinen M, Pöyhönen M, Huoponen K, Borozdin W, Bausch B, Botzenhart EM, Wilhelm C, Kääriäinen H, Kohlhase J (2007) Molecular analysis of the CHD7 gene in CHARGE syndrome: identification of 22 novel mutations and evidence for a low contribution of large CHD7 deletions. Genet Med 9(10):690–694CrossRefPubMedGoogle Scholar
  68. Whitehead MC, Morest DK (1985) The development of innervation patterns in the avian cochlea. Neuroscience 14:255–276CrossRefPubMedGoogle Scholar
  69. Wiener-Vacher SR, Mazda K (1998) Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J Pediatr 132:1028–1032CrossRefPubMedGoogle Scholar
  70. Wiener-Vacher SR, Amanou L, Denise P, Narcy P, Manach Y (1999) Vestibular function in children with the CHARGE association. Arch Otolaryngol Head Neck Surg 125:342–347CrossRefPubMedGoogle Scholar
  71. Wu DK, Kelley MW (2012) Molecular mechanisms of inner ear development. Cold Spring Harb Perspect Biol 4:a008409CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wu DK, Oh S-H (1996) Sensory organ generation in the chick inner ear. J Neurosci 16:6454–6462CrossRefPubMedGoogle Scholar
  73. Wu DK, Nunes FD, Choo D (1998) Axial specification for sensory organs versus non-sensory structures of the chicken inner ear. Development 125:11–20PubMedGoogle Scholar
  74. Yildirim I, Yetisir R (2004) Effects of different hatcher temperatures on hatching traits of broiler embryos during the last five days of incubation. S Afr J Anim Sci 34:211–216Google Scholar
  75. Yntema CL (1950) An analysis of induction of the ear from foreign ectoderm in the salamander embryo. J Exp Zool 113:211–243CrossRefGoogle Scholar
  76. Zucker RS (2005) Minis: whence and wherefore? Neuron 45:482–484CrossRefPubMedGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2018

Authors and Affiliations

  • Sigmund J. Lilian
    • 1
    • 2
  • Hayley E. Seal
    • 1
  • Anastas Popratiloff
    • 1
  • June C. Hirsch
    • 1
  • Kenna D. Peusner
    • 1
    Email author
  1. 1.Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonUSA
  2. 2.Lewis Katz School of Medicine at Temple UniversityPhiladelphiaUSA

Personalised recommendations