Assessing the Role of Place and Timing Cues in Coding Frequency and Amplitude Modulation as a Function of Age

  • Kelly L. Whiteford
  • Heather A. Kreft
  • Andrew J. Oxenham
Research Article


Natural sounds can be characterized by their fluctuations in amplitude and frequency. Ageing may affect sensitivity to some forms of fluctuations more than others. The present study used individual differences across a wide age range (20–79 years) to test the hypothesis that slow-rate, low-carrier frequency modulation (FM) is coded by phase-locked auditory-nerve responses to temporal fine structure (TFS), whereas fast-rate FM is coded via rate-place (tonotopic) cues, based on amplitude modulation (AM) of the temporal envelope after cochlear filtering. Using a low (500 Hz) carrier frequency, diotic FM and AM detection thresholds were measured at slow (1 Hz) and fast (20 Hz) rates in 85 listeners. Frequency selectivity and TFS coding were assessed using forward masking patterns and interaural phase disparity tasks (slow dichotic FM), respectively. Comparable interaural level disparity tasks (slow and fast dichotic AM and fast dichotic FM) were measured to control for effects of binaural processing not specifically related to TFS coding. Thresholds in FM and AM tasks were correlated, even across tasks thought to use separate peripheral codes. Age was correlated with slow and fast FM thresholds in both diotic and dichotic conditions. The relationship between age and AM thresholds was generally not significant. Once accounting for AM sensitivity, only diotic slow-rate FM thresholds remained significantly correlated with age. Overall, results indicate stronger effects of age on FM than AM. However, because of similar effects for both slow and fast FM when not accounting for AM sensitivity, the effects cannot be unambiguously ascribed to TFS coding.


frequency modulation amplitude modulation temporal fine structure age 



This work was supported by a grant from the National Institutes of Health (R01 DC005216).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Demany L, Semal C (1989) Detection thresholds for sinusoidal frequency modulation. J Acoust Soc Am 85:1295–1301. doi: 10.1121/1.397460 CrossRefPubMedGoogle Scholar
  2. Füllgrabe C (2013) Age-dependent changes in temporal-fine-structure processing in the absence of peripheral hearing loss. Am J Audiol 22:313. doi: 10.1044/1059-0889(2013/12-0070) CrossRefPubMedGoogle Scholar
  3. Füllgrabe C, Moore BCJ, Stone MA (2015) Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Front Aging Neurosci 7:1–25. doi: 10.3389/fnagi.2014.00347 Google Scholar
  4. Gallun FJ, McMillan GP, Molis MR et al (2014) Relating age and hearing loss to monaural, bilateral, and binaural temporal sensitivity. Front Neurosci 8:1–14. doi: 10.3389/fnins.2014.00172 Google Scholar
  5. Grose JH, Mamo SK (2010) Processing of temporal fine structure as a function of age. Ear Hear 31:755–760. doi: 10.1097/AUD.0b013e3181e627e7 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Grose JH, Mamo SK (2012) Frequency modulation detection as a measure of temporal processing: age-related monaural and binaural effects. Hear Res 294:49–54. doi: 10.1016/j.heares.2012.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hartmann WM, Hnath GM (1982) Detection of mixed modulation. Acustica 50:297–312Google Scholar
  8. He N, Mills JH, Dubno JR (2007) Frequency modulation detection: effects of age, psychophysical method, and modulation waveform. J Acoust Soc Am 122:467–477. doi: 10.1121/1.2741208 CrossRefPubMedGoogle Scholar
  9. He N, Mills JH, Ahlstrom JB, Dubno JR (2008) Age-related differences in the temporal modulation transfer function with pure-tone carriers. J Acoust Soc Am 124:3841–3849. doi: 10.1121/1.2998779 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hopkins K, Moore BCJ (2011) The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. J Acoust Soc Am 130:334–349. doi: 10.1121/1.3585848 CrossRefPubMedGoogle Scholar
  11. King A, Hopkins K, Plack CJ (2014) The effects of age and hearing loss on interaural phase difference discrimination. J Acoust Soc Am 135:342–351. doi: 10.1121/1.4838995 CrossRefPubMedGoogle Scholar
  12. Lacher-Fougère S, Demany L (1998) Modulation detection by normal and hearing-impaired listeners. Audiology 37:109–121CrossRefPubMedGoogle Scholar
  13. Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477. doi: 10.1121/1.1912375 CrossRefGoogle Scholar
  14. Loeb GE (2005) Are cochlear implant patients suffering from perceptual dissonance? Ear Hear 26:435–450CrossRefPubMedGoogle Scholar
  15. Loeb GE, White MW, Merzenich MM (1983) Spatial cross-correlation. Biol Cybern 47:149–163CrossRefPubMedGoogle Scholar
  16. Maiwald D (1967a) Die Berechnung von Modulationsschwellen mit Hilfe eines Funktionsschemas. Acustica 18:193–207Google Scholar
  17. Maiwald D (1967b) Ein Funktionsschema des Gehörs zur Beschreibung der Erkennbarkeit kleiner Frequenz-und Amplitudenänderungen. Acustica 18:81–92Google Scholar
  18. Micheyl C, Schrater PR, Oxenham AJ (2013) Auditory frequency and intensity discrimination explained using a cortical population rate code. PLoS Comput Biol 9:e1003336. doi: 10.1371/journal.pcbi.1003336 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Moore BCJ, Ernst SMA (2012) Frequency difference limens at high frequencies: evidence for a transition from a temporal to a place code. J Acoust Soc Am 132:1542–1547. doi: 10.1121/1.4739444 CrossRefPubMedGoogle Scholar
  20. Moore BCJ, Sek A (1992) Detection of combined frequency and amplitude modulation. J Acoust Soc Am 92:3119–3131. doi: 10.1121/1.404208 CrossRefPubMedGoogle Scholar
  21. Moore BCJ, Sek A (1994) Effects of carrier frequency and background noise on the detection of mixed modulation. J Acoust Soc Am 96:741–751CrossRefPubMedGoogle Scholar
  22. Moore BCJ, Sek A (1995) Effects of carrier frequency, modulation rate, and modulation waveform on the detection of modulation and the discrimination of modulation type (amplitude modulation versus frequency modulation). J Acoust Soc Am 97:2468–2478. doi: 10.1121/1.411967 CrossRefPubMedGoogle Scholar
  23. Moore BCJ, Sek A (1996) Detection of frequency modulation at low modulation rates: evidence for a mechanism based on phase locking. J Acoust Soc Am 100:2320–2331. doi: 10.1121/1.417941 CrossRefPubMedGoogle Scholar
  24. Moore BCJ, Skrodzka E (2002) Detection of frequency modulation by hearing-impaired listeners: effects of carrier frequency, modulation rate, and added amplitude modulation. J Acoust Soc Am 111:327–335. doi: 10.1121/1.1424871 CrossRefPubMedGoogle Scholar
  25. Moore BCJ, Glasberg BR, Stoev M et al (2012a) The influence of age and high-frequency hearing loss on sensitivity to temporal fine structure at low frequencies (L). J Acoust Soc Am 131:1003. doi: 10.1121/1.3672808 CrossRefPubMedGoogle Scholar
  26. Moore BCJ, Vickers DA, Mehta A (2012b) The effects of age on temporal fine structure sensitivity in monaural and binaural conditions. Int J Audiol 51:715–721. doi: 10.3109/14992027.2012.690079 CrossRefPubMedGoogle Scholar
  27. Neff DL (1986) Confusion effects with sinusoidal and narrow-band noise forward maskers. J Acoust Soc Am 79:1519–1529. doi: 10.1121/1.393678 CrossRefPubMedGoogle Scholar
  28. Otsuka S, Furukawa S, Yamagishi S et al (2016) Relation between cochlear mechanics and performance of temporal fine structure-based tasks. J Assoc Res Otolaryngol 17:541–557. doi: 10.1007/s10162-016-0581-9 CrossRefPubMedGoogle Scholar
  29. Oxenham AJ (2016) Predicting the perceptual consequences of hidden hearing loss. Trends Hear 20:1–6. doi: 10.1177/2331216516686768 Google Scholar
  30. Oxenham AJ, Micheyl C, Keebler MV (2009) Can temporal fine structure represent the fundamental frequency of unresolved harmonics? J Acoust Soc Am 125:2189–2199. doi: 10.1121/1.3089220 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Oxenham AJ, Micheyl C, Keebler MV et al (2011) Pitch perception beyond the traditional existence region of pitch. Proc Natl Acad Sci U S A 108:7629–7634. doi: 10.1073/pnas.1015291108 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Paraouty N, Lorenzi C (2017) Using individual differences to assess modulation-processing mechanisms and age effects. Hear Res 344:38–49. doi: 10.1016/j.heares.2016.10.024 CrossRefPubMedGoogle Scholar
  33. Paraouty N, Ewert SD, Wallaert N, Lorenzi C (2016) Interactions between amplitude modulation and frequency modulation processing: effects of age and hearing loss. J Acoust Soc Am 140:121–131. doi: 10.1121/1.4955078 CrossRefPubMedGoogle Scholar
  34. Ross B, Fujioka T, Tremblay KL, Picton TW (2007) Aging in binaural hearing begins in mid-life: evidence from cortical auditory-evoked responses to changes in interaural phase. J Neurosci 27:11172–11178. doi: 10.1523/JNEUROSCI.1813-07.2007 CrossRefPubMedGoogle Scholar
  35. Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2012) Why middle-aged listeners have trouble hearing in everyday settings. Curr Biol 22:1417–1422. doi: 10.1016/j.cub.2012.05.025 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Saberi K, Hafter ER (1995) A common neural code for frequency- and amplitude-modulated sounds. Nature 374:537–539. doi: 10.1038/374537a0 CrossRefPubMedGoogle Scholar
  37. Schoof T, Rosen S (2014) The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners. Front Aging Neurosci 6:1–14. doi: 10.3389/fnagi.2014.00307 CrossRefGoogle Scholar
  38. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694. doi: 10.1523/JNEUROSCI.1783-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shamma SA (1985) Speech processing in the auditory system II: lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J Acoust Soc Am 78:1622–1632. doi: 10.1121/1.392800 CrossRefPubMedGoogle Scholar
  40. Shamma S, Klein D (2000) The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J Acoust Soc Am 107:2631–2644. doi: 10.1121/1.428649 CrossRefPubMedGoogle Scholar
  41. Sheft S, Yost WA (1990) Temporal integration in amplitude modulation detection. J Acoust Soc Am 88:796–805. doi: 10.1121/1.399729 CrossRefPubMedGoogle Scholar
  42. Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87:245–251CrossRefGoogle Scholar
  43. Strelcyk O, Dau T (2009) Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing. J Acoust Soc Am 125:3328–3345. doi: 10.1121/1.3097469 CrossRefPubMedGoogle Scholar
  44. Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380. doi: 10.1121/1.383531 CrossRefPubMedGoogle Scholar
  45. Wallaert N, Moore BCJ, Lorenzi C (2016) Comparing the effects of age on amplitude modulation and frequency modulation detection. J Acoust Soc Am 139:3088–3096. doi: 10.1121/1.4953019 CrossRefPubMedGoogle Scholar
  46. Whiteford KL, Oxenham AJ (2015) Using individual differences to test the role of temporal and place cues in coding frequency modulation. J Acoust Soc Am 138:3093–3104. doi: 10.1121/1.4935018 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yost WA (1974) Discriminations of interaural phase differences. J Acoust Soc Am 55:1299–1303. doi: 10.1121/1.1914701 CrossRefPubMedGoogle Scholar
  48. Zwicker E (1956) Die elementaren Grundlagen zur Bestimmung der Informationskapazität des Gehörs. Acustica 6:365–381Google Scholar
  49. Zwicker E (1970) Masking and psychological excitation as consequences of the ear’s frequency analysis. In: Plomp R, Smoorenburg GF (eds) Frequency analysis and periodicity detection in hearing. Sijthoff, Leiden, pp 376–394Google Scholar

Copyright information

© Association for Research in Otolaryngology 2017

Authors and Affiliations

  • Kelly L. Whiteford
    • 1
  • Heather A. Kreft
    • 1
  • Andrew J. Oxenham
    • 1
  1. 1.Department of PsychologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations