Forward Masking in Cochlear Implant Users: Electrophysiological and Psychophysical Data Using Pulse Train Maskers

  • Youssef Adel
  • Gaston Hilkhuysen
  • Arnaud Noreña
  • Yves Cazals
  • Stéphane Roman
  • Olivier Macherey
Research Article


Electrical stimulation of auditory nerve fibers using cochlear implants (CI) shows psychophysical forward masking (pFM) up to several hundreds of milliseconds. By contrast, recovery of electrically evoked compound action potentials (eCAPs) from forward masking (eFM) was shown to be more rapid, with time constants no greater than a few milliseconds. These discrepancies suggested two main contributors to pFM: a rapid-recovery process due to refractory properties of the auditory nerve and a slow-recovery process arising from more central structures. In the present study, we investigate whether the use of different maskers between eCAP and psychophysical measures, specifically single-pulse versus pulse train maskers, may have been a source of confound.

In experiment 1, we measured eFM using the following: a single-pulse masker, a 300-ms low-rate pulse train masker (LTM, 250 pps), and a 300-ms high-rate pulse train masker (HTM, 5000 pps). The maskers were presented either at same physical current (Φ) or at same perceptual (Ψ) level corresponding to comfortable loudness. Responses to a single-pulse probe were measured for masker-probe intervals ranging from 1 to 512 ms. Recovery from masking was much slower for pulse trains than for the single-pulse masker. When presented at Φ level, HTM produced more and longer-lasting masking than LTM. However, results were inconsistent when LTM and HTM were compared at Ψ level. In experiment 2, masked detection thresholds of single-pulse probes were measured using the same pulse train masker conditions. In line with our eFM findings, masked thresholds for HTM were higher than those for LTM at Φ level. However, the opposite result was found when the pulse trains were presented at Ψ level.

Our results confirm the presence of slow-recovery phenomena at the level of the auditory nerve in CI users, as previously shown in animal studies. Inconsistencies between eFM and pFM results, despite using the same masking conditions, further underline the importance of comparing electrophysiological and psychophysical measures with identical stimulation paradigms.


electrical stimulation electrically evoked compound action potential recovery from forward masking detection threshold stimulation rate neural adaptation 



We would like to thank all subjects for their participation. We would also like to thank the editors and two anonymous reviewers for their insightful comments and helpful suggestions. This study was funded by the Agence Nationale de Recherche (ANR-11-PDOC-0022) and by the Mission pour l’interdisciplinarité du CNRS (Project DEFI-SENS). Parts of this work were presented at the 8th International Symposium on Objective Measures in Auditory Implants October 15–18, 2014 in Toronto, Ontario, Canada and at the Conference on Implantable Auditory Prostheses July 12–17, 2015 in Granlibakken, Lake Tahoe, CA, USA.

Compliance with Ethical Standards

A local ethics committee approved this study (Eudract 2012-A00438-35).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Abbas PJ, Brown CJ (2015) Assessment of responses to cochlear implant stimulation at different levels of the auditory pathway. Hear Res 322:67–76. doi: 10.1016/j.heares.2014.10.011 CrossRefPubMedGoogle Scholar
  2. Baudhuin JL, Hughes ML, Goehring JL (2016) A comparison of alternating polarity and forward masking artifact-reduction methods to resolve the electrically evoked compound action. Potential Ear Hear 37:e247–e255. doi: 10.1097/AUD.0000000000000288 CrossRefPubMedGoogle Scholar
  3. Bierer JA, Deeks JM, Billig AJ, Carlyon RP (2015) Comparison of signal and gap-detection thresholds for focused and broad cochlear implant electrode configurations. J Assoc Res Otolaryngol 16:273–284. doi: 10.1007/s10162-015-0507-y CrossRefPubMedPubMedCentralGoogle Scholar
  4. Botros A, Psarros C (2010) Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness. Ear Hear 31:380–391. doi: 10.1097/AUD.0b013e3181cb41aa CrossRefPubMedGoogle Scholar
  5. Boulet J, White M, Bruce IC (2015) Temporal considerations for stimulating spiral ganglion neurons with cochlear implants. J Assoc Res Otolaryngol. doi: 10.1007/s10162-015-0545-5 PubMedCentralGoogle Scholar
  6. Brown CJ, Abbas PJ (1990) Electrically evoked whole-nerve action potentials: parametric data from the cat. J Acoust Soc Am 88:2205–2210. doi: 10.1121/1.400117 CrossRefPubMedGoogle Scholar
  7. Brown CJ, Abbas PJ, Gantz B (1990) Electrically evoked whole-nerve action potentials: data from human cochlear implant users. J Acoust Soc Am 88:1385–1391. doi: 10.1121/1.399716 CrossRefPubMedGoogle Scholar
  8. Chatterjee M (1999) Temporal mechanisms underlying recovery from forward masking in multielectrode-implant listeners. J Acous Soc Am 105:1853. doi: 10.1121/1.426722 CrossRefGoogle Scholar
  9. Clay KM, Brown CJ (2007) Adaptation of the electrically evoked compound action potential (ECAP) recorded from nucleus CI24 cochlear implant users. Ear Hear 28:850–861. doi: 10.1097/AUD.0b013e318157671f CrossRefPubMedGoogle Scholar
  10. Eisen MD, Franck KH (2004) Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant subjects. Ear Hear 25:528–538CrossRefPubMedGoogle Scholar
  11. Frijns JH, Briaire JJ, de Laat JA, Grote JJ (2002) Initial evaluation of the clarion CII cochlear implant: speech perception and neural response imaging. Ear Hear 23:184–197CrossRefPubMedGoogle Scholar
  12. Garadat SN, Zwolan TA, Pfingst BE (2012) Across-site patterns of modulation detection: relation to speech recognition. J Acoust Soc Am 131:4030–4041. doi: 10.1121/1.3701879 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Green T, Faulkner A, Rosen S (2012) Variations in carrier pulse rate and the perception of amplitude modulation in cochlear implant users. Ear Hear 33:221–230. doi: 10.1097/AUD.0b013e318230fff8 CrossRefPubMedGoogle Scholar
  14. Hayes AF, Krippendorff K (2007) Answering the call for a standard reliability measure for coding data communication. Methods and Measures 1:77–89CrossRefGoogle Scholar
  15. Hughes ML, Castioni EE, Goehring JL, Baudhuin JL (2012) Temporal response properties of the auditory nerve: data from human cochlear-implant recipients. Hear Res 285:46–57. doi: 10.1016/j.heares.2012.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Killian MJ, Klis SF, Smoorenburg GF (1994) Adaptation in the compound action potential response of the guinea pig VIIIth nerve to electric stimulation. Hear Res 81:66–82CrossRefPubMedGoogle Scholar
  17. Kreft HA, Donaldson GS, Nelson DA (2004) Effects of pulse rate on threshold and dynamic range in clarion cochlear-implant users (L). J Acoust Soc Am 115:1885. doi: 10.1121/1.1701895 CrossRefPubMedGoogle Scholar
  18. Laneau J, Boets B, Moonen M, van Wieringen A, Wouters J (2005) A flexible auditory research platform using acoustic or electric stimuli for adults and young children. J Neurosci Methods 142:131–136. doi: 10.1016/j.jneumeth.2004.08.015 CrossRefPubMedGoogle Scholar
  19. Lee ER, Friedland DR, Runge CL (2012) Recovery from forward masking in elderly cochlear implant users. Otol Neurotol 33:355–363. doi: 10.1097/MAO.0b013e318248ede5 CrossRefPubMedGoogle Scholar
  20. Loizou PC (1998) Mimicking the human ear. IEEE Signal Process Mag 15:101–130. doi: 10.1109/79.708543 CrossRefGoogle Scholar
  21. Macherey O, Carlyon RP, van Wieringen A, Deeks JM, Wouters J (2008) Higher sensitivity of human auditory nerve fibers to positive electrical currents. J Assoc Res Otolaryngol 9:241–251. doi: 10.1007/s10162-008-0112-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Macherey O, Deeks JM, Carlyon RP (2011) Extending the limits of place and temporal pitch perception in cochlear implant users. J Assoc Res Otolaryngol 12:233–251. doi: 10.1007/s10162-010-0248-x CrossRefPubMedGoogle Scholar
  23. Matsuoka AJ, Abbas PJ, Rubinstein JT, Miller CA (2000) The neuronal response to electrical constant-amplitude pulse train stimulation: evoked compound action potential recordings. Hear Res 149:115–128CrossRefPubMedGoogle Scholar
  24. McKay CM, Chandan K, Akhoun I, Siciliano C, Kluk K (2013a) Can ECAP measures be used for totally objective programming of cochlear implants? J Assoc Res Otolaryngol 14:879–890. doi: 10.1007/s10162-013-0417-9 CrossRefPubMedPubMedCentralGoogle Scholar
  25. McKay CM, Henshall KR, Farrell RJ, McDermott HJ (2003) A practical method of predicting the loudness of complex electrical stimuli. J Acous Soc Am 113:2054. doi: 10.1121/1.1558378 CrossRefGoogle Scholar
  26. McKay CM, Lim HH, Lenarz T (2013b) Temporal processing in the auditory system: insights from cochlear and auditory midbrain implantees. J Assoc Res Otolaryngol 14:103–124. doi: 10.1007/s10162-012-0354-z CrossRefPubMedGoogle Scholar
  27. Miller CA, Abbas PJ, Brown CJ (2000) An improved method of reducing stimulus artifact in the electrically evoked whole-nerve potential. Ear Hear 21:280–290. doi: 10.1097/00003446-200008000-00003 CrossRefPubMedGoogle Scholar
  28. Miller CA, Abbas PJ, Robinson BK (2001) Response properties of the refractory auditory nerve fiber. J Assoc Res Otolaryngol 2:216–232. doi: 10.1007/s101620010083 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Miller CA, Abbas PJ, Rubinstein JT, Robinson BK, Matsuoka AJ, Woodworth G (1998) Electrically evoked compound action potentials of guinea pig and cat: responses to monopolar, monophasic stimulation. Hear Res 119:142–154. doi: 10.1016/s0378-5955(98)00046-x CrossRefPubMedGoogle Scholar
  30. Miller CA, Hu N, Zhang F, Robinson BK, Abbas PJ (2008) Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngol 9:122–137. doi: 10.1007/s10162-007-0108-5 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Miller CA, Woo J, Abbas PJ, Hu N, Robinson BK (2011) Neural masking by sub-threshold electric stimuli: animal and computer model results. J Assoc Res Otolaryngol 12:219–232. doi: 10.1007/s10162-010-0249-9 CrossRefPubMedGoogle Scholar
  32. Morsnowski A, Charasse B, Collet L, Killian M, Muller-Deile J (2006) Measuring the refractoriness of the electrically stimulated auditory nerve. Audiol Neurootol 11:389–402. doi: 10.1159/000095966 CrossRefPubMedGoogle Scholar
  33. Nelson DA, Donaldson GS (2001) Psychophysical recovery from single-pulse forward masking in electric hearing. J Acoust Soc Am 109:2921–2933. doi: 10.1121/1.1371762 CrossRefPubMedGoogle Scholar
  34. Nelson DA, Donaldson GS (2002) Psychophysical recovery from pulse-train forward masking in electric hearing. J Acoust Soc Am 112:2932–2947. doi: 10.1121/1.1514935 CrossRefPubMedGoogle Scholar
  35. Pfingst BE et al (2011) Cochlear infrastructure for electrical hearing. Hear Res 281:65–73. doi: 10.1016/j.heares.2011.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Plomp R (1964) Rate of decay of auditory sensation. J Acoust Soc Am 36:277–282. doi: 10.1121/1.1918946 CrossRefGoogle Scholar
  37. Relkin EM, Pelli DG (1987) Probe tone thresholds in the auditory nerve measured by two-interval forced-choice procedures. J Acoust Soc Am 82:1679–1691CrossRefPubMedGoogle Scholar
  38. Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591CrossRefPubMedGoogle Scholar
  39. Rubinstein JT, Wilson BS, Finley CC, Abbas PJ (1999) Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 127:108–118CrossRefPubMedGoogle Scholar
  40. Shannon RV (1990) Forward masking in patients with cochlear implants. J Acoust Soc Am 88:741–744. doi: 10.1121/1.399777 CrossRefPubMedGoogle Scholar
  41. Vandali AE, Whitford LA, Plant KL, Clark GM (2000) Speech perception as a function of electrical stimulation rate: using the nucleus 24 cochlear implant system. Ear Hear 21:608–624CrossRefPubMedGoogle Scholar
  42. Wilson BS, Finley CC, Lawson DT, Zerbi M (1997) Temporal representations with cochlear implants. Otol Neurotol 18:S30–S534Google Scholar
  43. Zeng FG, Rebscher S, Harrison W, Sun X, Feng H (2008) Cochlear implants: system design, integration, and evaluation IEEE. Rev Biomed Eng 1:115–142. doi: 10.1109/RBME.2008.2008250 CrossRefGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2017

Authors and Affiliations

  1. 1.Aix Marseille Université, CNRS, Centrale Marseille, LMAMarseille Cedex 13France
  2. 2.Audiological Acoustics, Department of OtorhinolaryngologyUniversity Hospital FrankfurtFrankfurtGermany
  3. 3.Laboratoire Neurosciences Intégratives et AdaptativesUMR CNRS 7260 and Aix-Marseille Université, Fédération de Recherche 3CMarseilleFrance
  4. 4.Department of Pediatric Otorhinolaryngology Head and Neck SurgeryLa Timone Children’s Hospital, Aix Marseille UniversitéMarseille Cedex 5France

Personalised recommendations