Application of Mouse Models to Research in Hearing and Balance

  • Kevin K. OhlemillerEmail author
  • Sherri M. Jones
  • Kenneth R. Johnson
Review Article


Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.


mice inbred outbred recombinant inbred knockout cochlea deafness presbycusis age-related hearing loss noise-induced hearing loss genetic hearing loss hair cells auditory neurons lateral wall stria vascularis vestibular vestibular testing saccule utricle maculae semicircular canal ampullae 


Compliance with Ethical Standards

Funding Agencies

KKO: Washington University Medical School Department of Otolaryngology

SAJ: Nebraska Tobacco Settlement Biomedical Research Foundation

KRJ: NIH NIDCD RO1 DC004301, R01 DC005827

Supplementary material

10162_2016_589_MOESM1_ESM.xlsx (24 kb)
ESM 1 (XLSX 24 kb)
10162_2016_589_MOESM2_ESM.docx (455 kb)
ESM 2 (DOCX 455 kb)
10162_2016_589_MOESM3_ESM.docx (94 kb)
ESM 3 (DOCX 94 kb)
10162_2016_589_MOESM4_ESM.doc (84 kb)
ESM 4 (DOC 84 kb)


  1. Agrawal Y, Platz EA, Niparko JK (2009) Risk factors for hearing loss in US adults: data from the National Health and Nutrition Examination Survey, 1999 to 2002. Otol Neurotol 30:139–145CrossRefPubMedGoogle Scholar
  2. Aitkin LM, Irvine DRF, Webster W.R (1984) Central neural mechanisms of hearing. Comprehensive PhysiologyGoogle Scholar
  3. Al-Mana D, Ceranic B, Djahanbakhch O, Luxon LM (2008) Hormones and the auditory system: a review of physiology and pathophysiology. Neurosci 153:881–900CrossRefGoogle Scholar
  4. Altschuler RA, Raphael Y, Prosen C, Dolan DF, Moody DB (1992) Acoustic stimulation and overstimulatoni in the cochlea: a comparison between basal and apical turns of the cochlea. In: Dancer AL, Henderson D, Salvi RJ, Hamernik RP (eds) Noise-Induced Hearing Loss. Mosby Year Book, St. Louis, pp 60–73Google Scholar
  5. Anniko M, Sobin A, Wersäll J (1980) Vestibular hair cell pathology in the Shaker-2 mouse. Arch Otorhinolaryngol 226:45–50CrossRefPubMedGoogle Scholar
  6. Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11:369–375CrossRefPubMedGoogle Scholar
  7. Baker M (2013) Through the eyes of a mouse. Nature 502:156–158CrossRefPubMedGoogle Scholar
  8. Baloh RW (2012) Episodic ataxias 1 and 2. Handb Clin Neurol 103:595–602CrossRefPubMedGoogle Scholar
  9. Barkdull GC, Hondarrague Y, Meyer T, Harris JP, Keithley EM (2007) AM-111 reduces hearing loss in a guinea pig model of acute Labyrinthitis. Laryngoscope 117:2174–2182CrossRefPubMedGoogle Scholar
  10. Barrenäs M-L, Lindgren F (1991) The influence of eye color on susceptibility to TTS in humans. Br J Audiol 25:303–307CrossRefPubMedGoogle Scholar
  11. Bartels S, Ito S, Trune DR, Nuttall AL (2001) Noise-induced hearing loss: the effect of melanin in the stria vascularis. Hear Res 154:116–123CrossRefPubMedGoogle Scholar
  12. Basta D, Tzschentke B, Ernst A (2005) Noise-induced cell death in the mouse medial geniculate body and primary auditory cortex. Neurosci Lett 381:199–204CrossRefPubMedGoogle Scholar
  13. Battinelli EM, Boyd Y, Craig IW, Breakefield XO, Chen ZY (1996) Characterization and mapping of the mouse NDP (Norrie disease) locus (Ndp). Mamm Genome 7:93–97CrossRefPubMedGoogle Scholar
  14. Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemers N, Neubauer M, Neuhaus I, Yordanova R, Guan B, Truong A, Yang W-P, He A, Kayne P, Gargalovic P, Kirchgessner T, Pan C, Castallani LW, Kostem E, Furlotte N, Drake TA, Eskin E, Lusis AJ (2010) A high resolution association mapping panel for the dissection of complex traits in mice. Genome Res 20:281–290CrossRefPubMedPubMedCentralGoogle Scholar
  15. Birgerson L, Gustavson K, Stahle J (1987) Familial Menière’s disease: a genetic investigation. Am J Otol 8:323–326PubMedGoogle Scholar
  16. Birkenmeier EH, Davisson MT, Beamer WG, Ganschow RE, Vogler CA, Gwynn B, Lyford KA, Maltais LM, Wawrzyniak CJ (1989) Murine mucopolysaccharidosis type VII: characterization of a mouse with a beta-glucuronidase deficiency. J Clin Invest 83:1258–1266CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bizley JK, Nodal FR, Bajo VM, Nelken I, King AJ (2007) Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cereb Cortex 17:2172–2189CrossRefPubMedGoogle Scholar
  18. Blesa J, Przedborski, S (2016) Parkinson’s disease: animal models and dopaminergic cell vulnerability. Parkinson’s Disease: Cell Vulnerability and Disease Progression, p. 9Google Scholar
  19. Bowl MR, Dawson SJ (2015) The mouse as a model for age-related hearing loss-a mini-review. Gerontology 61:149–157CrossRefPubMedGoogle Scholar
  20. Bredberg G (1968) Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol 236(Suppl):1–135Google Scholar
  21. Brenowitz EA, Zakon HH (2015) Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. TINS 38:273–278PubMedPubMedCentralGoogle Scholar
  22. Bult CJ, Eppig JT, Blake JA, Kadin JA, Richardson JE, Mouse Genome Database Group (2016) Mouse genome database 2016. Nucleic Acids Res 44(D1):D840–D847CrossRefPubMedGoogle Scholar
  23. Cable J, Jackson IJ, Steel KP (1993) Light (Blt), a mutation that causes melanocyte death, affects stria vascularis function in the mouse inner ear. Pigment Cell Res 6:215–225CrossRefPubMedGoogle Scholar
  24. Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20:89–108CrossRefPubMedGoogle Scholar
  25. Caras ML (2013) Estrogenic modulation of auditory processing: a vertebrate comparison. Front Neuroendocrinol 34:285–299CrossRefPubMedPubMedCentralGoogle Scholar
  26. Carlsson P-I, Van Laer L, Borg E, Bondeson M-L, Thys M, Fransen E, Van Camp G (2005) The influence of genetic variation in oxidative stress genes on human noise susceptibility. Hear Res 202:87–96CrossRefPubMedGoogle Scholar
  27. Chang B (2016) Animal Models of Retinitis Pigmentosa (RP). Animal Models of Ophthalmic Diseases. Springer International Publishing, pp. 101–116Google Scholar
  28. Chen CS (1978) Acoustic trauma-induced developmental change in the acoustic startle response and audiogenic seizures in mice. Exp Neurol 60:400–403CrossRefPubMedGoogle Scholar
  29. Chen G-D, Fechter LD (2003) The relationship between noise-induced hearing loss and hair cell loss in rats. Hear Res 177:81–90CrossRefPubMedGoogle Scholar
  30. Chen CS, Gates GR, Bock GR (1973) Effect of priming and tympanic membrane destruction on development of audiogenic seizure susceptibility in BALBc mice. Exp Neurol 39:277–284CrossRefPubMedGoogle Scholar
  31. Chen CS, Gates GR, Reynoldson JA (1976) Effect of Morphine and Naloxone on Priming-Induced Audiogenic Seizures in BALB/c Mice. Br J Pharmacol 58:517–520CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chia R, Achilli F, Festing MF, Fisher EM (2005) The origins and uses of mouse outbred stocks. Nat Genet 37:1181–1186CrossRefPubMedGoogle Scholar
  33. Ciuman RR (2009) Communication routes between intracranial spaces and inner ear: function, pathophysiologic importance and relations with inner ear diseases. Am J Otolaryngol 30:193–202CrossRefPubMedGoogle Scholar
  34. Cohen GM, Park JC, Grasso JS (1990) Comparison of demyelination and neural degeneration in spiral and Scarpa’s ganglion of C57BL/6 mice. J Elect Microsc Tech 15:165–172CrossRefGoogle Scholar
  35. Conlee JW, Abdul-Baqi KJ, McCandless GA, Creel DJ (1986) Differential susceptibility to noise-induced permanent threshold shift between albino and pigmented guinea pigs. Hear Res 23:81–91CrossRefPubMedGoogle Scholar
  36. Conlee JW, Abdul-Baqi KJ, McCandless GA, Creel DJ (1988) Effects of aging on normal hearing loss and noise-induced threshold shift in albino and pigmented guinea pigs. Acta Otolaryngol 106:64–70CrossRefPubMedGoogle Scholar
  37. Conlee JW, Gill SS, McCandless PT, Creel DJ (1989) Differential susceptibility to gentamicin ototoxicity between albino and pigmented guinea pigs. Hear Res 41:43–52CrossRefPubMedGoogle Scholar
  38. Crawley JN (2000) What’s Wrong with my Mouse? Wiley and Sons, New YorkGoogle Scholar
  39. Creel D (1980) Inappropriate use of albino animals as models in research. Pharmacol Biochem Behav 12:969–977CrossRefPubMedGoogle Scholar
  40. Crow A.L, Ohmen J, Wang J, Lavinsky J, Hartiala J, Li Q, Li X, Salehide P, Eskin E, Pan C, Lusis AJ (2015) The genetic architecture of hearing impairment in mice: evidence for frequency specific genetic determinants. G3: Genes, Genomes, Genetics, g3-115Google Scholar
  41. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790CrossRefPubMedGoogle Scholar
  42. Da Costa DA, Castro JC, Macedo MEG (2008) Iris pigmentation and susceptibility to noise-induced hearing loss. Int J Audiol 47:115–118CrossRefPubMedGoogle Scholar
  43. Davis RR, Newlander JK, Ling X-B, Cortopassi GA, Kreig EF, Erway LC (2001) Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res 155:82–90CrossRefPubMedGoogle Scholar
  44. Davis RR, Custer DA, Krieg E, Alagramam K (2010) N-Acetyl L-Cysteine does not protect mouse ears from the effects of noise. J Occ Med Toxicol 5:11CrossRefGoogle Scholar
  45. de Brouwer AP, Pennings RJ, Roeters M, Van Hauwe P, Astuto LM, Hoefsloot LH, Huygen PL, van den Helm B, Deutman AF, Bork JM, Kimberling WJ (2003) Mutations in the calcium-binding motifs of CDH23 and the 35delG mutation in GJB2 cause hearing loss in one family. Hum Genet 112:156–163PubMedGoogle Scholar
  46. del Marmol V, Beermann F (1996) Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett 381:165–168CrossRefPubMedGoogle Scholar
  47. Deol MS, Lane PW (1966) A new gene affecting the morphogenesis of the vestibular part of the inner ear in the mouse. J Embryol Exp Morphol 16:543–548PubMedGoogle Scholar
  48. Ding D-L, McFadden SL, Salvi RJ (2001) Cochlear hair cell densities and inner ear staining techniques. In: Willott JF (ed) Handbook of mouse auditory research: from behavior to molecular biology. CRC Press, New York, NY, pp 189–204CrossRefGoogle Scholar
  49. Dobson GP (2003) On being the right size: heart design, mitochondrial efficiency and lifespan potential. Clin Exp Pharmacol Physiol 30:590–597CrossRefPubMedGoogle Scholar
  50. Dowdell KC, Pesnicak L, Hoffmann V, Steadman K, Remaley AT, Cohen JI, Straus SE, Rao VK (2009) Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, diminishes lymphoproliferation in the Fas-deficient MRL/lpr−/− murine model of autoimmune lymphoproliferative syndrome (ALPS). Exp Hematol 37:487–494CrossRefPubMedPubMedCentralGoogle Scholar
  51. Drayton M, Noben-Trauth K (2006) Mapping quantitative trait loci for hearing loss in Black Swiss mice. Hear Res 212:128–139CrossRefPubMedGoogle Scholar
  52. Dror AA, Avraham KB (2010) Hearing impairment: a panoply of genes and functions. Neuron 68:293–308CrossRefPubMedGoogle Scholar
  53. Ehret G (1974) Age-dependent hearing loss in normal hearing mice. Naturwissenschaften 61:506–507CrossRefPubMedGoogle Scholar
  54. Ehret G (1983) Psychoacoustics. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C Thomas, Spring field, Illinois, pp 13–56Google Scholar
  55. Eppsteiner RW, Smith RJ (2011) Genetic disorders of the vestibular system. Curr Opin Otolaryngol Head Neck Surg 19:397–402CrossRefPubMedPubMedCentralGoogle Scholar
  56. Erway LC, Willott JF, Archer JR, Harrison DE (1993) Genetics of age-related hearing loss in mice: I. Inbred and F1 hybrid strains. Hear Res 65:125–132CrossRefPubMedGoogle Scholar
  57. Farber DB, Flannery JG, Bowes-Rickman C (1994) The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog Retin Eye Res 13:31–64CrossRefGoogle Scholar
  58. Fernandez EA, Ohlemiller KK, Gagnon PM, Clark WW (2010) Protection against noise-induced hearing loss in young CBA/J mice by low-dose kanamycin. J Assoc Res Otolaryngol 11:235–244CrossRefPubMedPubMedCentralGoogle Scholar
  59. Festing MF (2010) Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicol Pathol 38:681–690CrossRefPubMedGoogle Scholar
  60. Feuerstein A, Herbst A, Wallner P (2014) Another biomarker of susceptibility to noise induced hearing loss. Biomonitoring 1:1CrossRefGoogle Scholar
  61. Fransen E, Lemkens N, Van Laer L, Van Camp G (2003) Age-related hearing impairment (ARHI): environmental risk factors and genetic prospects. Exp Gerontol 38:353–359CrossRefPubMedGoogle Scholar
  62. Fransen E, Bonneux S, Corneveaux JJ, Schrauwen I, Di Berardino F, White CH, Ohmen JD, Van de Heyning P, Ambrosetti U, Huentelman MJ, Van Camp G (2015) Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. Eur J Hum Genet 23:110–115CrossRefPubMedGoogle Scholar
  63. Friedman RA, Ryan AF (1992) Transgenic mice. Current applications to the study of the auditory and vestibular systems. Otolaryngol Clin North Am 25:1017–1026PubMedGoogle Scholar
  64. Frykholm C, Larsen H, Dahl N, Klar J, Rask-Andersen H, Friberg U (2006) Familial Ménière’s disease in five generations. Otol Neurotol 27:681–686CrossRefPubMedGoogle Scholar
  65. Gagnon PM, Simmons DD, Bao J, Lei D, Ortmann AJ, Ohlemiller KK (2007) Temporal and genetic influences on protection against noise-induced hearing loss by hypoxic preconditioning in mice. Hear Res 226:79–91CrossRefPubMedGoogle Scholar
  66. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405CrossRefPubMedPubMedCentralGoogle Scholar
  67. Galazyuk A, Hébert S (2015) Gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: current status and future directions. Front Neurol 6:88CrossRefPubMedPubMedCentralGoogle Scholar
  68. Gates GA, Couropmitree NN, Myers RH (1999) Genetic associations in age-related hearing thresholds. Arch Otolaryngol Head Neck Surg 125:654–659CrossRefPubMedGoogle Scholar
  69. Gatti DM, Svenson KL, Shabalin A, Wu LY, Valdar W, Simecek P, Goodwin N, Cheng R, Pomp D, Palmer A, Chesler EJ (2014) Quantitative trait locus mapping methods for diversity outbred mice. G3 4(9):1623–1633CrossRefPubMedPubMedCentralGoogle Scholar
  70. Gazquez I, Lopez-Escamez JA (2011) Genetics of recurrent vertigo and vestibular disorders. Curr Genomics 12:443–450CrossRefPubMedPubMedCentralGoogle Scholar
  71. Geifman N, Rubin E (2013) The mouse age phenome knowledgebase and disease-specific inter-species age mapping. PLoS One 8:e81114CrossRefPubMedPubMedCentralGoogle Scholar
  72. Geng R, Sotomayor M, Kinder KJ, Gopal SR, Gerka-Stuyt J, Chen DHC, Hardisty-Hughes RE, Ball G, Parker A, Gaudet R, Furness D (2013) Noddy, a mouse harboring a missense mutation in protocadherin-15, reveals the impact of disrupting a critical interaction site between tip-link cadherins in inner ear hair cells. J Neurosci 33:4395–4404CrossRefPubMedPubMedCentralGoogle Scholar
  73. Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374:62–64CrossRefPubMedGoogle Scholar
  74. Gilman JP, Medalla M, Luebke JI (2016) Area-Specific Features of Pyramidal Neurons-a Comparative Study in Mouse and Rhesus Monkey. Cereb. Cortex, p. bhw062Google Scholar
  75. Giraudet F, Horner KC, Cazals Y (2002) Similar half-octave TTS protection of the cochlea by xylazine/ketamine or sympathectomy. Hear Res 174:239–248CrossRefPubMedGoogle Scholar
  76. Girotto G, Vuckovic D, Buniello A, Lorente-Canovas B, Lewis M, Gasparini P, Steel KP (2014) Expression and replication studies to identify new candidate genes involved in normal hearing function. PLoS One 9:e85352CrossRefPubMedPubMedCentralGoogle Scholar
  77. Gizzi MS, Peddareddygari LR, Grewal RP (2015) A familial form of benign paroxysmal positional vertigo maps to chromosome 15. Int J Neurosci 125:593–596CrossRefPubMedGoogle Scholar
  78. Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A (2005) The human spiral ganglion: New insights into ultrastructure, survival rate, and implications for cochlear implants. Audiol Neurootol 10:258–273CrossRefPubMedGoogle Scholar
  79. Guimaraes P, Zhu X, Cannon T, Kim S, Frisina RD (2004) Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice. Hear Res 192:83–89CrossRefPubMedGoogle Scholar
  80. Haack B, Markl H, Ehret G (1983) Sound communication between parents and offspring. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Spring field, Illinois, pp 57–97Google Scholar
  81. Hamernik RP, Patterson JH, Turrentine GA, Ahroon WA (1989) The quantitative relation between sensory cell loss and hearing thresholds. Hear Res 38:199–212CrossRefPubMedGoogle Scholar
  82. Hamilton LS, Sohl-Dickstein J, Huth AG, Carels VM, Deisseroth K, Bao S (2013) Optogenetic activation of an inhibitory network enhances feedforward functional connectivity in auditory cortex. Neuron 80(4):1066–1076CrossRefPubMedGoogle Scholar
  83. Harper JM (2008) Wild-derived mouse stocks: an underappreciated tool for aging research. Age 30(2–3):135–145CrossRefPubMedPubMedCentralGoogle Scholar
  84. Hederstierna C, Hultcrantz M, Collins A, Rosenhall U (2010) The menopause triggers hearing decline in healthy women. Hear Res 259:31–35CrossRefPubMedGoogle Scholar
  85. Heman-Ackah SE, Juhn SK, Huang TC, Wiedmann TS (2010) A combination antioxidant therapy prevents age-related hearing loss in C57BL/6 mice. Otolaryngol Head Neck Surg 143:429–434CrossRefPubMedGoogle Scholar
  86. Henley CM, Rybak LP (1995) Ototoxicity in developing animals. Brain Res Rev 20:68–90CrossRefPubMedGoogle Scholar
  87. Henry KR (1979) Differential changes of auditory nerve and brain stem short latency evoked potentials in the laboratory mouse. Electroencephalogr Clin Neurophysiol 46:452–459CrossRefPubMedGoogle Scholar
  88. Henry KR (1982a) Influence of genotype and age on noise-induced auditory losses. Behav Genet 12:563–573CrossRefPubMedGoogle Scholar
  89. Henry KR (1982b) Age-related changes in sensitivity of the postpubertal ear to acoustic trauma. Hear Res 8:285–294CrossRefPubMedGoogle Scholar
  90. Henry KR (1983a) Ageing and audition. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, Illinois, pp 470–494Google Scholar
  91. Henry KR (1983b) Lifelong susceptibility to acoustic trauma: changing patterns of cochlear damage over the life span of the mouse. Audiology 22:372–383CrossRefPubMedGoogle Scholar
  92. Henry KR (1984) Noise and the young mouse: genotype modifies the sensitive period for effects on cochlear physiology and audiogenic seizures. Behav Neurosci 98:1073–1082CrossRefPubMedGoogle Scholar
  93. Henry KR (1985) Tuning of the auditory brainstem OFF responses is complementary to tuning of the auditory brainstem ON response. Hear Res 19:115–125CrossRefPubMedGoogle Scholar
  94. Henry KR (1989) Detuning of cochlear action potential tuning curves at high sound pressure levels: influence of temporal, spectral and intensity variables. Audiology 28:19–36CrossRefPubMedGoogle Scholar
  95. Henry KR (2003) Hyperthermia exacerbates and hypothermia protects from noise-induced threshold elevation of the cochlear nerve envelope response in the C57BL/6J mouse. Hear Res 179:88–96CrossRefPubMedGoogle Scholar
  96. Henry KR (2004) Males lose hearing earlier in mouse models of late-onset age-related hearing loss; Females lose hearing earlier in mouse models of early-onset hearing loss. Hear Res 190:141–148CrossRefPubMedGoogle Scholar
  97. Henry KR, Chole RA (1979) Cochlear electrical activity in the C57BL/6 laboratory mouse: volume-conducted vertex and round window response. Acta Otolaryngol 87:61–68CrossRefPubMedGoogle Scholar
  98. Henry KR, Chole RA (1980) Genotypic differences in behavioral, physiological and anatomical expressions of age-related hearing loss in the laboratory mouse. Audiology 19:369–383CrossRefPubMedGoogle Scholar
  99. Henry KR, Haythorn MM (1978) Effects of age and stimulus intensity of the far field auditory brain stem potentials in the laboratory mouse. Dev Psychobiol 11:161–168CrossRefPubMedGoogle Scholar
  100. Henry KR, Lepkowski CM (1978) Evoked potential correlates of genetic progressive hearing loss: age-related changes from the ear to the inferior colliculus of C57BL/6 and CBA/J mice. Acta Otolaryngol 86:366–374PubMedGoogle Scholar
  101. Henry KR, McGinn MD (1992) The mouse as a model for human audition. A review of literature. Audiology 31:181–189CrossRefPubMedGoogle Scholar
  102. Henry KR, Chole RA, McGinn MD, Frush DP (1981) Increased ototoxicity in both young and old mice. Arch Otolaryngol 107:92–95CrossRefPubMedGoogle Scholar
  103. Henry KR, Fast GA, Nguyen HH, Paolinelli MC, Ayars NM (1985) Extra high-frequency auditory thresholds: fine structure, reliability, temporal integration and relation to ear canal resonance. Audiology 24:92–103CrossRefPubMedGoogle Scholar
  104. Hequembourg S, Liberman MC (2001) Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol 2:118–129CrossRefPubMedPubMedCentralGoogle Scholar
  105. Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111:552–564CrossRefPubMedGoogle Scholar
  106. Hildesheimer M, Henkin Y, Muchnik C, Anafi R, Sahartov E, Rubinstein M (1991) Sedation effect on temporary threshold shift induced by acoustic overstimulation. Hear Res 51:161–166CrossRefPubMedGoogle Scholar
  107. Hirose K, Sato E (2011) Comparative analysis of combination kanamycin-furosemide versus kanamycin alone in the mouse cochlea. Hear Res 272:108–116CrossRefPubMedGoogle Scholar
  108. Hitzemann R, Bell J, Rasmussen E, McCaughran J (2001) Chapter 21. Mapping the genes for the acoustic startle response (ASR) and prepulse inhibition of the ASR in the BxD recombinant inbred series: effect of high-frequency hearing loss and cochilear pathology. In: Willott JF (ed) Handbook of mouse auditory research: from behavior to molecular biology. CRC Press, Boca Raton, pp 441–455Google Scholar
  109. Hofman MA (2012) Design principles of the human brain: an evolutionary perspective. Evolution of the primate brain: from neuron to behavior. Elsevier, London, pp 373–390Google Scholar
  110. Hosoya M, Fujioka M, Ogawa K, Okano H (2016a). Distinct Expression Patterns of Causative Genes Responsible for Hereditary Progressive Hearing Loss in Non-Human Primate Cochlea. Sci. Rep. 6Google Scholar
  111. Hosoya M, Fujioka M, Kobayashi R, Okano H, Ogawa K (2016b) Overlapping expression of anion exchangers in the cochlea of a non-human primate suggests functional compensation. Neurosci. ResGoogle Scholar
  112. Huet A, Batrel C, Tang Y, Desmadryl G, Wang J, Puel JL, Bourien J (2016) Sound coding in the auditory nerve of gerbils. Hearing ResGoogle Scholar
  113. Hughes AE, Newton VE, Liu XZ, Read AP (1994) A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1. Nat Genet 7:509–512CrossRefPubMedGoogle Scholar
  114. Hunter KP, Willott JF (1987) Aging and the auditory brainstem response in mice with severe or minimal presbycusis. Hear Res 30:207–218CrossRefPubMedGoogle Scholar
  115. Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K (2006) Genetic influence on human lifespan and longevity. Hum Genet 119:312–321CrossRefPubMedGoogle Scholar
  116. Iwashita M, Kanai R, Funabiki K, Matsuda K, Hirano T (2001) Dynamic properties, interactions and adaptive modifications of vestibulo-ocular reflex and optokinetic response in mice. Neurosci Res 39:299CrossRefPubMedGoogle Scholar
  117. Jackson IJ, Abbott CM (eds) (2000) Mouse genetics and transgenics: a practical approach. Oxford University Press, New YorkGoogle Scholar
  118. Jeffery G (1997) The albino retina: an abnormality that provides insight into normal retinal development. Trends Neurosci 20:165–169CrossRefPubMedGoogle Scholar
  119. Jen JC (2008) Recent advances in the genetics of recurrent vertigo and vestibulopathy. Curr Opin Neurol 21:3–7CrossRefPubMedGoogle Scholar
  120. Jen JC (2011) Genetics of vestibulopathies. Adv Otorhinolaryngol 70:130–134PubMedGoogle Scholar
  121. Jensen JB, Lysaght AC, Liberman MC, Qvortrup K, Stankovic KM (2015) Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice. PLoS One 10:e0125160CrossRefPubMedPubMedCentralGoogle Scholar
  122. Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946PubMedGoogle Scholar
  123. Johnson KR, Erway LC, Cook SA, Willott JF, Zheng QY (1997) A major gene affecting age-related hearing loss in C57BL/6J mice. Hear Res 114:83–92CrossRefPubMedGoogle Scholar
  124. Johnson KR, Zheng QY, Erway LC (2000) A major gene affecting age-related hearing loss is common to at least 10 inbred strains of mice. Genomics 70:171–180CrossRefPubMedGoogle Scholar
  125. Johnson KR, Zheng QY, Letts VA (2001) Chapter 27. Genetic analysis of non-transgenic mouse mutations affecting ear morphology or function. In: Willott JF (ed) Handbook of mouse auditory research: from behavior to molecular biology. CRC Press, New York, pp 401–428Google Scholar
  126. Johnson KR, Longo-Guess CM, Gagnon LH (2015) A QTL on Chr 5 modifies hearing loss associated with the fascin-2 variant of DBA/2J mice. Mamm Genome 26:338–347CrossRefPubMedPubMedCentralGoogle Scholar
  127. Jones TA, Jones SM (1999) Short latency compound action potentials from mammalian gravity receptor organs. Hear Res 136:75–85CrossRefPubMedGoogle Scholar
  128. Jones SM, Jones TA (2014) Genetics of peripheral vestibular dysfunction: lessons from mutant mouse strains. J Am Acad Audiol 25:289–301CrossRefPubMedPubMedCentralGoogle Scholar
  129. Jones SM, Erway LC, Bergstrom RA, Schimenti JC, Jones TA (1999) Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice. Hear Res 135:56–60CrossRefPubMedGoogle Scholar
  130. Jones SM, Subramanian G, Avniel W, Guo Y, Burkard RF, Jones TA (2002) Stimulus and recording variables and their effects on mammalian vestibular evoked potentials. J Neurosci Methods 118:23–31CrossRefPubMedGoogle Scholar
  131. Jones SM, Johnson KR, Yu H, Erway LC, Alagramam KN, Pollak N, Jones TA (2005) A quantitative survey of gravity receptor function in mutant mouse strains. J Assoc Res Otolaryngol 6:297–310CrossRefPubMedPubMedCentralGoogle Scholar
  132. Jones SM, Jones TA, Johnson KR, Yu H, Erway LC, Zheng QY (2006) A comparison of vestibular and auditory phenotypes in inbred mouse strains. Brain Res 1091:40–46CrossRefPubMedPubMedCentralGoogle Scholar
  133. Jyothi V, Li M, Kilpatrick LA, Smythe NM, LaRue AC, Zhou D, Schulte BA, Schmiedt RA, Lang H (2010) Unmyelinated auditory type I spiral ganglion neurons in congenic Ly5.1 mice. J Comp Neurol 518:3254–3271CrossRefPubMedPubMedCentralGoogle Scholar
  134. Kane KL, Longo-Guess CM, Gagnon LH, Ding D, Salvi RJ, Johnson KR (2012) Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res 283:80–88CrossRefPubMedGoogle Scholar
  135. Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K, Warchol ME (2015) Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci 35:15050–15061CrossRefPubMedPubMedCentralGoogle Scholar
  136. Kikkawa Y, Seki Y, Okumura K, Ohshiba Y, Miyasaka Y, Suzuki S, Ozaki M, Matsuoka K, Noguchi Y, Yonekawa H (2012) Advantages of a mouse model for human hearing impairment. Exp Anim 61:85–98CrossRefPubMedGoogle Scholar
  137. Kim JU, Lee HJ, Kang HH, Shin JW, Ku SW, Ahn JH, Kim YJ, Chung JW (2005) Protective effect of isoflurane anesthesia on noise‐induced hearing loss in mice. Laryngoscope 115:1996–1999CrossRefPubMedGoogle Scholar
  138. Klockars T, Kentala E (2007) Inheritance of Meniere’s disease in the Finnish population. Arch Otolaryngol Head Neck Surg 133:73–77CrossRefPubMedGoogle Scholar
  139. Kokjohn TA, Roher AE (2009) Amyloid precursor protein transgenic mouse models and Alzheimer’s disease: understanding the paradigms, limitations, and contributions. Alzheimers Dement 5:340–347CrossRefPubMedPubMedCentralGoogle Scholar
  140. Kraev A (2014) Parallel universes of Black Six biology. Biol Direct 9:1–10CrossRefGoogle Scholar
  141. Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise: evidence of a misspent youth. J Neurosci 26:2115–2123CrossRefPubMedPubMedCentralGoogle Scholar
  142. Kujawa SG, Liberman MC (2009) Adding insult to injury: Cochlear nerve degeneration after ‘temporary’ noise-induced hearing loss. J Neurosci 29:14077–14085CrossRefPubMedPubMedCentralGoogle Scholar
  143. Kulig J, Williot JF (1984) Frequency difference limens of C57BL/6 and DBA/2mice: relationship to auditory neuronal response properties and hearing impairment. Hear Res 16:169–174CrossRefPubMedGoogle Scholar
  144. Laemle LK, Strominger NL, Carpenter DO (2006) Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice. Neurosci Lett 396:108–112CrossRefPubMedGoogle Scholar
  145. Land RB (1970) Genetic and phenotypic relationships between ovulation rate and body weight in the mouse. Genet Res 15:171–182CrossRefPubMedGoogle Scholar
  146. Landegger LD, Psaltis D, Stankovic KM (2016) Human audiometric thresholds do not predict specific cellular damage in the inner ear. Hear Res 335:83–93CrossRefPubMedGoogle Scholar
  147. Lang H, Schulte BA, Zhou D, Smythe NM, Spicer SS, Schmiedt RA (2006) Nuclear factor kB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 26:3541–3550CrossRefPubMedPubMedCentralGoogle Scholar
  148. Lavinsky J, Crow AL, Pan C, Wang J, Aaron KA, Ho MK, Li Q, Salehide P, Myint A, Monges-Hernadez M, Eskin E (2015) Genome-wide association study identifies Nox3 as a critical gene for susceptibility to noise-induced hearing loss. PLoS Genet 11:e1005094CrossRefPubMedPubMedCentralGoogle Scholar
  149. Le Calvez S, Avan P, Gilain L, Romand R (1998) CD1 hearing-impaired mice. I: distortion product otoacoustic emission levels, cochlear function and morphology. Hear Res 120:37–50CrossRefPubMedGoogle Scholar
  150. Le Prell CG, Lobarinas E (2015) Strategies for Evaluating Antioxidant Efficacy in Clinical Trials Assessing Prevention of Noise-Induced Hearing Loss. In: Miller, J., Le Prell, C.G., (Eds.), Free Radicals in ENT Pathology. Springer International New York, pp. 163–192Google Scholar
  151. Le Prell CG, Dell S, Hemsley B, Hall JW, Campbell KCM, Antonelli PJ, Green GE, Miller JM, Guire K (2012) Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects. Ear Hear 33:e44–e358CrossRefPubMedPubMedCentralGoogle Scholar
  152. Li HS (1992) Influence of genotype and age on acute acoustic trauma and recovery in CBA/Ca and C57BL/6J mice. Acta Otolaryngol 112:956–967CrossRefPubMedGoogle Scholar
  153. Li LY, Li YT, Zhou M, Tao HW, Zhang LI (2013) Intracortical multiplication of thalamocortical signals in mouse auditory cortex. Nat Neurosci 16(9):1179–1181CrossRefPubMedPubMedCentralGoogle Scholar
  154. Liberman MC, Kiang N-YS (1978) Acoustic trauma in cats: cochlear pathology and auditory nerve activity. Acta Otolaryngol 358:1–63Google Scholar
  155. Lin FR, Thorpe R, Gordon-Salant S, Ferrucci L (2011) Hearing loss prevalence and risk factors among older adults in the United States. J Gerontol A Biol Sci Med Sci 66:582–590CrossRefPubMedGoogle Scholar
  156. Lin FR, Maas P, Chien W, Carey JP, Ferrucci L, Thorpe R (2012) Association of skin color, race/ethnicity, and hearing loss among adults in the USA. J Assoc Res Otolaryngol 13:109–117CrossRefPubMedGoogle Scholar
  157. Liu W, Edin F, Blom H, Magnusson P, Schrott-Fischer A, Glueckert R, Santi PA, Li H, Laurell, G, Rask-Andersen H (2016) Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man. Cell Tiss. Res. 1–15Google Scholar
  158. Lobarinas E, Hayes SH, Allman BL (2013) The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Hear Res 295:150–160CrossRefPubMedGoogle Scholar
  159. Longenecker RJ, Galazyuk AV (2011) Development of tinnitus in CBA/CaJ mice following sound exposure. J Assoc Res Otolaryngol 12:647–658CrossRefPubMedPubMedCentralGoogle Scholar
  160. Löscher W (2010) Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions. Neurosci Biobehav Rev 34:31–49CrossRefPubMedGoogle Scholar
  161. Mahendrasingam S, MacDonald JA, Furness DN (2011) Relative time course of degeneration of different cochlear structures in the CD/1 mouse model of accelerated aging. J Assoc Res Otolaryngol 12:437–453CrossRefPubMedPubMedCentralGoogle Scholar
  162. Manji SSM, Miller KA, Williams LH, Andreasen L, Siboe M, Rose E, Bahlo M, Kuiper M, Dahl H-HM (2011) Molecular pathogenesis of genetic and inherited diseases an ENU-induced mutation of Cdh23 causes congenital hearing loss, but no vestibular dysfunction, in mice. Am J Pathol 179:903–914CrossRefPubMedPubMedCentralGoogle Scholar
  163. McFadden SL, Henselman LW, Zheng X-Y (1999) Sex differences in auditory sensitivity of chinchillas before and after exposure to impulse noise. Ear Hear 20:164–174CrossRefPubMedGoogle Scholar
  164. McGinn MD, Bean-Knudsen D, Ermel RW (1992) Incidence of otitis media in CBA/J and CBA/CaJ mice. Hear Res 59:1–6CrossRefPubMedGoogle Scholar
  165. Meltser I, Cederroth CR, Basinou V, Savelyev S, Lundkvist GS, Canlon B (2014) TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr Biol 24:658–663CrossRefPubMedPubMedCentralGoogle Scholar
  166. Mianné J, Chessum L, Kumar S, Aguilar C, Codner G, Hutchison M, Parker A, Mallon AM, Wells S, Simon MM, Teboul L (2016) Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med 8:1CrossRefGoogle Scholar
  167. Mikaelian DO (1979) The development and degeneration of hearing in the C57/bl6 mouse: relation of the electrophysiologic responses from the round window to cochlear anatomy and behavioral responses. Laryngoscope 89:1–15CrossRefPubMedGoogle Scholar
  168. Mikaelian DO, Warfield D, Norris O (1974) Genetic progressive hearing loss in the C57b16 mouse. Acta Otolaryngol 77:327–334CrossRefPubMedGoogle Scholar
  169. Miller RA, Harper JM, Dysko RC, Durkee SJ, Austad SN (2002) Longer life spans and delayed maturation in wild-derived mice. Exp Biol Med 227(7):500–508Google Scholar
  170. Mills JH (1973) Threshold shifts produced by exposure to noise in chinchillas with noise-induced hearing loss. J Speech Hear Res 16:700–708CrossRefPubMedGoogle Scholar
  171. Mock BE, Vijayakuma S, Pierce J, Jones TA, Jones SM (2016) Differential effects of Cdh23753A on auditory and vestibular functional aging in C57BL/6J mice. Neurobiol Aging 43:13–22Google Scholar
  172. Moore AK, Wehr M (2013) Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. J Neurosci 33(34):13713–13723CrossRefPubMedPubMedCentralGoogle Scholar
  173. Moshammer H, Kundi M, Wallner P, Herbst A, Feuerstein A, Hutter HP (2015) Early prognosis of noise-induced hearing loss. Occup Environ Med 72:85–89CrossRefPubMedGoogle Scholar
  174. Müller U, Barr-Gillespie PG (2015) New treatment options for hearing loss. Nat Rev Drug Discov 14:346–365CrossRefPubMedGoogle Scholar
  175. Muller M, von Hunerbein K, Hoidis S, Smolders JWT (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73CrossRefPubMedGoogle Scholar
  176. Myint A, White CH, Ohmen JD, Li X, Wang J, Lavinsky J, Salehi P, Crow AL, Ohyama T, Friedman RA (2016) Large-scale phenotyping of noise-induced hearing loss in 100 strains of mice. Hear Res 332:113–120CrossRefPubMedGoogle Scholar
  177. Nagtegaal AP, Spijker S, Crins TTH, Borst JGG (2012) A novel QTL underlying early-onset, low‐frequency hearing loss in BXD recombinant inbred strains. Genes Brain Behav 11:911–920PubMedGoogle Scholar
  178. Nemoto M, Morita Y, Mishima Y, Takahashi S, Nomura T, Ushiki T, Shiroishi T, Kikkawa Y, Yonekawa H, Kominami R (2004) Ahl3, a third locus on mouse chromosome 17 affecting age-related hearing loss. Biochem Biophys Res Commun 324:1283–1288CrossRefPubMedGoogle Scholar
  179. Nickel AG, von Hardenberg A, Hohl M, Löffler JR, Kohlhaas M, Becker J, Reil JC, Kazakov A, Bonnekoh J, Stadelmaier M, Puhl SL (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484CrossRefPubMedGoogle Scholar
  180. Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35:21–23CrossRefPubMedPubMedCentralGoogle Scholar
  181. Noben-Trauth K, Latoche JR, Neely HR, Bennett B (2010) Phenotype and genetics of progressive sensorineural hearing loss (Snhl1) in the LXS set of recombinant inbred strains of mice. PLoS One 5:e11459CrossRefPubMedPubMedCentralGoogle Scholar
  182. Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9:65–89CrossRefPubMedGoogle Scholar
  183. Ohlemiller KK (2002) Reduction in sharpness of frequency tuning but not endocochlear potential in aging and noise-exposed BALB/cJ mice. J Assoc Res Otolaryngol 3:444–456CrossRefPubMedPubMedCentralGoogle Scholar
  184. Ohlemiller KK (2006) Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 1091:89–102CrossRefPubMedGoogle Scholar
  185. Ohlemiller KK (2009) Mechanisms and genes in human strial presbycusis from animal models. Brain Res 1277:70–83CrossRefPubMedPubMedCentralGoogle Scholar
  186. Ohlemiller KK (2012) Chapter 1: current issues in noise exposure. In: Tremblay KL, Burkard RF (eds) Translational Perspectives in Hearing Science, Special Topics, vol 3. Plural Publishing, San Diego, pp 1–34Google Scholar
  187. Ohlemiller KK (2013) Gene/environment interactions in acquired hearing loss. In: Toriello HSS (ed) Hereditary hearing loss and its syndromes. Oxford Press, New York, pp 58–84Google Scholar
  188. Ohlemiller KK (2015) Chapter 3: a question of balance: free radicals in inner ear homeostasis. In: Miller J, Le Prell CG (eds) Free radicals in ENT medicine. Springer, New York, pp 21–55CrossRefGoogle Scholar
  189. Ohlemiller KK, Gagnon PM (2007) Genetic dependence of cochlear cells and structures injured by noise. Hear Res 224:34–50CrossRefPubMedGoogle Scholar
  190. Ohlemiller KK, Siegel JH (1994) Cochlear basal and apical differences reflected in the effects of cooling on responses of single auditory nerve fibers. Hear Res 80:174–190CrossRefPubMedGoogle Scholar
  191. Ohlemiller KK, Wright JS, Heidbreder AF (2000) Vulnerability to noise-induced hearing loss in ‘middle-aged’ and young adult mice: a dose-response approach in CBA, C57BL, and BALB inbred strains. Hear Res 149:239–247CrossRefPubMedGoogle Scholar
  192. Ohlemiller KK, Lett JM, Gagnon PM (2006) Cellular correlates of age-related endocochlear potential reduction in a mouse model. Hear Res 220:10–26CrossRefPubMedGoogle Scholar
  193. Ohlemiller KK, Rice MR, Lett JM, Gagnon PM (2009) Absence of strial melanin coincides with age associated marginal cell loss and endocochlear potential decline. Hear Res 249:1–14CrossRefPubMedGoogle Scholar
  194. Ohlemiller KK, Dahl AR, Gagnon PM (2010) Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae. J Assoc Res Otolaryngol 11:605–623CrossRefPubMedPubMedCentralGoogle Scholar
  195. Ohlemiller KK, Rybak Rice ME, Rellinger EA, Ortmann AJ (2011a) Divergence of noise vulnerability in cochleae of young CBA/J and CBA/CaJ mice. Hear Res 272:13–20CrossRefPubMedGoogle Scholar
  196. Ohlemiller KK, Rybak Rice ME, Rosen AD, Montgomery SC, Gagnon PM (2011b) Protection by low-dose Kanamycin against noise-induced hearing loss in mice: dependence on dosing regimen and genetic background. Hear Res 280:141–147CrossRefPubMedPubMedCentralGoogle Scholar
  197. Ohlemiller KK, Rosen AR, Rellinger EA, Montgomery SC, Gagnon PM (2011c) Different cellular and genetic basis of noise-related endocochlear potential reduction in CBA/J and BALB/cJ mice. J Assoc Res Otolaryngol 12:45–58CrossRefPubMedGoogle Scholar
  198. Ohlemiller KK, Kiener AL, Gagnon PM (2016) QTL Mapping of Endocochlear Potential Differences between C57BL/6J and BALB/cJ mice. J Assoc Res Otolaryngol 17:173–194CrossRefPubMedGoogle Scholar
  199. Ou HC, Bohne BA, Harding GW (2000a) Noise damage in the C57BL/CBA mouse cochlea. Hear Res 145:111–122CrossRefPubMedGoogle Scholar
  200. Ou HC, Harding GW, Bohne BA (2000b) An anatomically based frequency-place map for the mouse cochlea. Hear Res 145:123–129CrossRefPubMedGoogle Scholar
  201. Paquette ST, Gilels F, White PM (2016) Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse. Sci Rep 6:25056CrossRefPubMedPubMedCentralGoogle Scholar
  202. Parker CC, Palmer AA (2011) Dark matter: are mice the solution to missing heritability? Front Genet 2:32CrossRefPubMedPubMedCentralGoogle Scholar
  203. Pennings RJ, Topsakal V, Astuto L, de Brouwer AP, Wagenaar M, Huygen PL, Kimberling WJ, Deutman AF, Kremer H, Cremers CW (2004) Variable clinical features in patients with CDH23 mutations (USH1D-DFNB12). Otol Neurotol 25:699–706CrossRefPubMedGoogle Scholar
  204. Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8:58–69CrossRefPubMedGoogle Scholar
  205. Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, Asquith S, Crew V, Johnson KA, Robinson P, Scott VE (2004) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res 14:1806–1811CrossRefPubMedPubMedCentralGoogle Scholar
  206. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM (2013) Diverse visual features encoded in mouse lateral geniculate nucleus. J Neurosci 33:4642–4656CrossRefPubMedPubMedCentralGoogle Scholar
  207. Poirrier AL, Van den Ackerveken P, Kim T-S, Vandenbosch R, Nguyen L, Lefebvre PP, Malgrange B (2010) Ototoxic drugs: difference in sensitivity between mice and guinea pigs. Toxicol Lett 193:41–49CrossRefPubMedGoogle Scholar
  208. Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14:708–721CrossRefPubMedGoogle Scholar
  209. Price K, Zhu X, Guimaraes PF, Vasilyeva ON, Frisina RD (2009) Hormone replacement therapy diminishes hearing in peri-menopausal mice. Hear Res 252:29–36CrossRefPubMedPubMedCentralGoogle Scholar
  210. Prieve BA, Yanz JL (1984) Age-dependent changes in susceptibility to otoxic hearing loss. Acta Otolaryngol 98:428–438CrossRefPubMedGoogle Scholar
  211. Pujol R (1992) Sensitive developmental period and acoustic trauma: facts and hypotheses. In: Dancer AL (ed) Noise-induced hearing loss. Mosby, St. Louis, pp 196–203Google Scholar
  212. Qiu W, Hamernik RP, Davis B (2006) The kurtosis metric as an adjunct to energy in the prediction of trauma from continuous, nonGaussian noise exposure. J Acoust Soc Am 120:3901–3906CrossRefPubMedGoogle Scholar
  213. Rauch SD (1992) Malformation and degeneration in the inner ear of mos transgenic mice. Ann Otol Rhinol Laryngol 101:430–436CrossRefPubMedGoogle Scholar
  214. Rellinger EA, Gagnon PM, Ohlemiller KK (2012) Eliminating catalase paradoxically reduces age- and noise-associated threshold elevation in C57BL/6 mice. Abstr., Assn. Res. Otolaryngol. 35, 330Google Scholar
  215. Riley PA (1997) Molecules in focus: melanin. Int J Biochem Cell Biol 11:1235–1239CrossRefGoogle Scholar
  216. Riva C, Donadieu E, Magnan J, Lavieille JP (2007) Age-related hearing loss in CD/1 mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea. Exp Gerontol 42:327–336CrossRefPubMedGoogle Scholar
  217. Rubinstein M, Pluznik N (1976) Effect of anesthesia on susceptibility to acoustic trauma. Ann Otol Rhinol Laryngol 85:276–280CrossRefPubMedGoogle Scholar
  218. Rudnicki A, Avraham KB (2012) microRNAs: the art of silencing in the ear. EMBO Mol Med 4:849–859CrossRefPubMedPubMedCentralGoogle Scholar
  219. Salt AN, Plontke SK (2009) Principles of local drug delivery to the inner ear. Audiol Neurootol 14:350–360CrossRefPubMedPubMedCentralGoogle Scholar
  220. Santi PA, Aldaya R, Brown A, Johnson S, Stromback T, Cureoglu S, Rask-Andersen H (2016) Scanning Electron Microscopic Examination of the Extracellular Matrix in the Decellularized Mouse and Human Cochlea. J. Assoc. Res. OtolaryngolGoogle Scholar
  221. Saunders JC (1974) The physiological effects of priming for audiogenic seizures in mice. Laryngoscope 84:750–756CrossRefPubMedGoogle Scholar
  222. Saunders JC, Garfinkle TJ (1983) Peripheral anatomy and physiology I. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, Illinois, pp 131–168Google Scholar
  223. Saunders JC, Bock GR, Chen CS, Gates GR (1972) The effects of priming for audiogenic seizures on cochlear and behavioral responses in BALB/c mice. Exp Neurol 36:426–436CrossRefPubMedGoogle Scholar
  224. Schraermeyer U, Heimann K (1999) Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12:219–236CrossRefPubMedGoogle Scholar
  225. Schreiner L (1999) Recent experimental and clinical findings retarding an interlabyrinthine connection. Laryngo-Rhino-Otologie 78:387–393CrossRefPubMedGoogle Scholar
  226. Schreiner CE, Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365CrossRefPubMedPubMedCentralGoogle Scholar
  227. Schughart K, Libert C, Kas MJ (2013) Controlling complexity: the clinical relevance of mouse complex genetics. Eur J Hum Genet 21:1191–1196CrossRefPubMedPubMedCentralGoogle Scholar
  228. Schuknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol 80:369–382CrossRefPubMedGoogle Scholar
  229. Schuknecht HF, Gacek MR (1993) Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 102:1–16CrossRefPubMedGoogle Scholar
  230. Schuknecht HF, Watanuki K, Takahashi T, Belal AA, Kimura RS, Jones DD (1974) Atrophy of the stria vascularis, a common cause for hearing loss. Laryngoscope 84:1777–1821CrossRefPubMedGoogle Scholar
  231. Schultz JM, Yang Y, Caride AJ, Filoteo AG, Penheiter AR, Lagziel A, Morell RJ, Mohiddin SA, Fananapazir L, Madeo AC, Penniston JT (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. NEJM 352:1557–1564CrossRefPubMedGoogle Scholar
  232. Schwander M, Xiong W, Tokita J, Lelli A, Elledge HM, Kazmierczak P, Sczaniecka A, Kolatkar A, Wiltshire T, Kuhn P, Holt JR, Kachar B, Tarantino L, Müller U (2009) A mouse model for nonsyndromic deafness (DFNB2) links hearing loss to defects in tip links of mechanosensory hair cells. Proc Natl Acad Sci U S A 106:5252–5257CrossRefPubMedPubMedCentralGoogle Scholar
  233. Shearer AE, Smith RJ (2012) Genetics: advances in genetic testing for deafness. Curr Opin Pediatr 24:679CrossRefPubMedPubMedCentralGoogle Scholar
  234. Sheykholeslami K, Megerian CA, Zheng QY (2009) Vestibular evoked myogenic potentials in normal mice and Phex mice with spontaneous endolymphatic hydrops. Otol Neurotol 30:535–544CrossRefPubMedPubMedCentralGoogle Scholar
  235. Shi L, Liu K, Wang H, Zhang Y, Hong Z, Wang M, Wang X, Jiang X, Yang S (2015) Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice. Acta Otolaryngol 135:1093–1102CrossRefPubMedGoogle Scholar
  236. Shi L, Chang Y, Li X, Aiken SJ, Liu L, Wang J (2016) Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea. Front Neurosci 10:231CrossRefPubMedPubMedCentralGoogle Scholar
  237. Shiga A, Nakagawa T, Nakayama M, Endo T, Iguchi F, Kim TS, Naito Y, Ito J (2005) Aging effects on vestibulo-ocular responses in C57BL/6 mice: comparison with alteration in auditory function. Audiol Neurootol 10:97–104CrossRefPubMedGoogle Scholar
  238. Shin JB, Longo-Guess CM, Gagnon LH, Saylor KW, Dumont RA, Spinelli KJ, Pagana JM, Wilmarth PA, David LL, Gillespie PG, Johnson KR (2010) The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice. J Neurosci 30:9683–9694CrossRefPubMedPubMedCentralGoogle Scholar
  239. Shnerson A, Pujol R (1982) Age-related changes in the C57BL/6J mouse cochlea. I. Physiological findings. Dev Brain Res 2:65–75CrossRefGoogle Scholar
  240. Shnerson A, Willott JF (1980) Ontogeny of the acoustic startle response in C57BL/6J mouse pups. J Comp Physiol Psychol 94:36–40CrossRefPubMedGoogle Scholar
  241. Shone G, Raphael Y, Miller JM (1991) Hereditary deafness occurring in cd/1 mice. Hear Res 57:153–156CrossRefPubMedGoogle Scholar
  242. Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Muller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–955CrossRefPubMedGoogle Scholar
  243. Silver LM (1995) Mouse genetics. Oxford Press, OxfordGoogle Scholar
  244. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27CrossRefPubMedGoogle Scholar
  245. Skarnes WC (2015) Is mouse embryonic stem cell technology obsolete? Genome Biol 16:1CrossRefGoogle Scholar
  246. Sloan-Heggen CM, Bierer AO, Shearer AE, Kolbe DL, Nishimura CJ, Frees KL, Ephraim SS, Shibata SB, Booth KT, Campbell CA, Ranum PT (2016) Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet 135:441–450CrossRefPubMedPubMedCentralGoogle Scholar
  247. Song Q, Shen P, Li X, Shi L, Liu L, Wang J, Yu Z, Stephen K, Aiken S, Yin S, Wang J (2016) Coding deficits in hidden hearing loss induced by noise: the nature and impacts. Sci Rep 6:25200CrossRefPubMedPubMedCentralGoogle Scholar
  248. Soons JA, Ricci AJ, Steele CR, Puria S (2015) Cytoarchitecture of the mouse organ of Corti from base to apex, determined using in situ two-photon imaging. J Assoc Res Otolaryngol 16:47–66CrossRefPubMedGoogle Scholar
  249. Spongr VP, Flood DG, Frisina RD, Salvi RJ (1997) Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life span. J Acoust Soc Am 101:3546–3553CrossRefPubMedGoogle Scholar
  250. Steel KP (1991) Similarities between mice and humans with hereditary deafness. Ann N Y Acad Sci 630:69–79CrossRefGoogle Scholar
  251. Steel KP (1995) Inherited hearing defects in mice. Annu Rev Genet 29:675–701CrossRefPubMedGoogle Scholar
  252. Steel KP (2014) What’s the use of genetics? Perspectives on auditory research. Springer, New York, pp 569–584CrossRefGoogle Scholar
  253. Steel KP, Barkway C (1989) Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 107:453–463PubMedGoogle Scholar
  254. Steel KP, Kimberling W (1996) Approaches to understanding the molecular genetics of hearing and deafness. In: Van De Water T, Popper AN, Fay RR (eds) Clinical aspects of hearing. Springer, New York, pp 10–40CrossRefGoogle Scholar
  255. Steel KP, Smith RJ (1992) Normal hearing in Splotch (Sp/+), the mouse homologue of Waardenburg syndrome type 1. Nat Genet 2:75–79CrossRefPubMedGoogle Scholar
  256. Steel K, Niaussat MM, Bock GR (1983) The genetics of hearing. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, Illinois, pp 341–394Google Scholar
  257. Steel KP, Barkway C, Bock GR (1987) Strial dysfunction in mice with cochleo-saccular abnormalities. Hear Res 27:11–26CrossRefPubMedGoogle Scholar
  258. Stevens JC, Banks GT, Festing MF, Fisher EM (2007) Quiet mutations in inbred strains of mice. Trends Mol Med 13:512–519CrossRefPubMedGoogle Scholar
  259. Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L, Churchill GA (2012) High-resolution genetic mapping using the Mouse Diversity outbred population. Genetics 190:437–447CrossRefPubMedPubMedCentralGoogle Scholar
  260. Syed FA, Mödder UI, Roforth M, Hensen I, Fraser DG, Peterson JM, Oursler MJ, Khosla S (2010) Effects of chronic estrogen treatment on modulating age‐related bone loss in female mice. J Bone Miner Res 25:2438–2446CrossRefPubMedPubMedCentralGoogle Scholar
  261. Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569CrossRefPubMedGoogle Scholar
  262. Tassabehji M, Newton VE, Leverton K, Turnbull K, Seemanova E, Kunze J, Sperling K, Strachan T, Read AP (1994) PAX3 gene structure and mutations: close analogies between Waardenburg syndrome and the Splotch mouse. Hum Mol Genet 3:1069–1074CrossRefPubMedGoogle Scholar
  263. Threadgill DW, Churchill GA (2012) Ten years of the collaborative cross. G3 2:153–156CrossRefPubMedPubMedCentralGoogle Scholar
  264. Turner J, Larsen D, Hughes L, Moechars D, Shore S (2012) Time course of tinnitus development following noise exposure in mice. J Neurosci Res 90:1480–1488CrossRefPubMedPubMedCentralGoogle Scholar
  265. Tylstedt S, Rask-Andersen H (2001) A 3-D model of membrane specializations between human auditory spiral ganglion cells. J Neurocytol 30:465–473CrossRefPubMedGoogle Scholar
  266. Tylstedt S, Kinnefors A, Rask-Andersen H (1997) Neural interaction in the human spiral ganglion: a TEM study. Acta Otolaryngol 117:505–512CrossRefPubMedGoogle Scholar
  267. Uhl EW, Warner NJ (2015) Mouse models as predictors of human responses: evolutionary medicine. Curr Pathobiol Rep 3:219–223CrossRefPubMedPubMedCentralGoogle Scholar
  268. van Alphen AM, Stahl JS, De Zeeuw CI (2001) The dynamic characteristics of the mouse horizontal vestibulo-ocular and optokinetic response. Brain Res 890:296–305CrossRefPubMedGoogle Scholar
  269. Van Eyken E, Van Camp G, Van Laer L (2007) The complexity of age-related hearing impairment: contributing environmental and genetic factors. Audiol Neurootol 12:345–358CrossRefPubMedGoogle Scholar
  270. Van Laer L, Carlsson PI, Ottschytsch N, Bondeson M-L, Konings A, Vandevelde A, Dieltjens N, Fransen E, Snyders D, Borg E, Raes A, Van Camp G (2006) The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss. Hum Mutat 27:786–795CrossRefPubMedGoogle Scholar
  271. van Stahl JS, Alphen AM, De Zeeuw CI (2000) A comparison of video and magnetic search coil recordings of mouse eye movements. J Neurosci Methods 99:101–110CrossRefPubMedGoogle Scholar
  272. Vanhooren V, Libert C (2013) The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev 12:8–21CrossRefPubMedGoogle Scholar
  273. Vierstra J, Rynes E, Sandstrom R, Zhang M, Canfield T, Hansen RS, Stehling-Sun S, Sabo PJ, Byron R, Humbert R, Thurman RE (2014) Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346:1007–1012CrossRefPubMedPubMedCentralGoogle Scholar
  274. Vijayakumar S, Lever TE, Pierce J, Zhao X, Bergstrom D, Lundberg YW, Jones TA, Jones SM (2015) Vestibular dysfunction, altered macular structure, and trait localization in A/J inbred mice. Mamm Genome 26:154–172CrossRefPubMedPubMedCentralGoogle Scholar
  275. Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268CrossRefPubMedPubMedCentralGoogle Scholar
  276. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918CrossRefPubMedPubMedCentralGoogle Scholar
  277. Whitney G, Nyby J (1983) Sound communication among adults. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, Illinois, pp 98–130Google Scholar
  278. Willott JF (1984) Changes in frequency representation in the auditory system of mice with age-related hearing impairment. Brain Res 309:159–162CrossRefPubMedGoogle Scholar
  279. Willott JF (1986) Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol 56:391–408PubMedGoogle Scholar
  280. Willott JF, Bross LS (1990) Morphology of the octopus cell area of the cochlear nucleus in young and aging C57BL/6J and CBA/J mice. J Comp Neurol 300:61–81CrossRefPubMedGoogle Scholar
  281. Willott JF, Shnerson A (1978) Rapid development of tuning characteristics of inferior colliculus neurons of mouse pups. Brain Res 148:230–333CrossRefPubMedGoogle Scholar
  282. Willott JF, Demuth RM, Lu SM, Van Bergem P (1982) Abnormal tonotopic organization in the ventral cochlear nucleus of the hearing-impaired DBA/2 mouse. Neurosci Lett 34:13–17CrossRefPubMedGoogle Scholar
  283. Willott JF, Hunter KP, Coleman JR (1988) Aging and presbycusis: effects on 2-deoxy-D-glucose uptake in the mouse auditory brain stem in quiet. Exp Neurol 99:615–621CrossRefPubMedGoogle Scholar
  284. Willott JF, Turner JG, Carlson S, Ding D, Bross LS, Falls WA (1998) The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Hear Res 115:162–174CrossRefPubMedGoogle Scholar
  285. Wolff D (1931) Melanin in the inner ear. Arch Otolaryngol 14:195–211CrossRefGoogle Scholar
  286. Wright CG, Lee DH (1989) Pigmented cells of the stria vascularis. Acta Otolaryngol 108:190–200CrossRefPubMedGoogle Scholar
  287. Wu T, Marcus DC (2003) Age-related changes in cochlear endolymphatic potassium and potential in CD-1 and CBA/CaJ mice. J Assoc Res Otolaryngol 4:353–362CrossRefPubMedPubMedCentralGoogle Scholar
  288. Wu W-J, Sha S, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL, and BALB mice and the Sprague-Dawley rat. Hear Res 158:165–178CrossRefPubMedGoogle Scholar
  289. Xia L, Chen Z, Su K, Yin S, Wang J (2014) Comparison of cochlear cell death caused by cisplatin, alone and in combination with furosemide. Toxicol Pathol 42:376–385CrossRefPubMedGoogle Scholar
  290. Yalcin B, Flint J (2012) Association studies in outbred mice in a new era of full-genome sequencing. Mamm Genome 23:719–726CrossRefPubMedPubMedCentralGoogle Scholar
  291. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379CrossRefPubMedPubMedCentralGoogle Scholar
  292. Yerkes RM (1904) The dancing mouse: a study in animal behavior. MacMillan, New YorkGoogle Scholar
  293. Yoshida N, Liberman MC (2000) Sound conditioning reduces noise-induced permanent threshold shift in mice. Hear Res 148:213–219CrossRefPubMedGoogle Scholar
  294. Yoshida N, Kristiansen A, Liberman MC (1999) Heat stress and protection from permanent acoustic injury in mice. J Neurosci 19:10116–10124PubMedGoogle Scholar
  295. Yuan R, Tsaih SW, Petkova SB, Evsikova D, Marin C, Xing S, Marion MA, Bogue MA, Mills KD, Peters LL, Bult CJ (2009) Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8:277–287CrossRefPubMedPubMedCentralGoogle Scholar
  296. Zou B, Mittal R, Grati MH, Lu Z, Shu Y, Tao Y, Feng Y, Xie D, Kong W, Yang S, Chen ZY (2015) The application of genome editing in studying hearing loss. Hear Res 327:102–108CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2016

Authors and Affiliations

  • Kevin K. Ohlemiller
    • 1
    Email author
  • Sherri M. Jones
    • 2
  • Kenneth R. Johnson
    • 3
  1. 1.Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and DeafnessWashington University School of MedicineSaint LouisUSA
  2. 2.Department of Special Education and Communication DisordersUniversity of Nebraska-LincolnLincolnUSA
  3. 3.The Jackson LaboratoryBar HarborUSA

Personalised recommendations