Advertisement

Experimental and Modeling Study of Human Tympanic Membrane Motion in the Presence of Middle Ear Liquid

  • Xiangming Zhang
  • Xiying Guan
  • Don Nakmali
  • Vikrant Palan
  • Mario Pineda
  • Rong Z. GanEmail author
Research Article

Abstract

Vibration of the tympanic membrane (TM) has been measured at the umbo using laser Doppler vibrometry and analyzed with finite element (FE) models of the human ear. Recently, full-field TM surface motion has been reported using scanning laser Doppler vibrometry, holographic interferometry, and optical coherence tomography. Technologies for imaging human TM motion have the potential to lead to using a dedicated clinical diagnosis tool for identification of middle ear diseases. However, the effect of middle ear fluid (liquid) on TM surface motion is still not clear. In this study, a scanning laser Doppler vibrometer was used to measure the full-field surface motion of the TM from four human temporal bones. TM displacements were measured under normal and disease-mimicking conditions with different middle ear liquid levels over frequencies ranging from 0.2 to 8 kHz. An FE model of the human ear, including the ear canal, middle ear, and spiral cochlea was used to simulate the motion of the TM in normal and disease-mimicking conditions. The results from both experiments and FE model show that a simple deflection shape with one or two major displacement peak regions of the TM in normal ear was observed at low frequencies (1 kHz and below) while complicated ring-like pattern of the deflection shapes appeared at higher frequencies (4 kHz and above). The liquid in middle ear mainly affected TM deflection shapes at the frequencies higher than 1 kHz.

Keywords

tympanic membrane scanning laser Doppler vibrometer finite element model vibration deflection shape otitis media with effusion 

Notes

Acknowledgments

This work was supported by NIH R01DC011585.

References

  1. Aarnisalo AA, Cheng JT, Ravicz ME, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography. Hear Res 263:78–84PubMedCentralPubMedCrossRefGoogle Scholar
  2. Carrie S, Hutton DA, Birchall JP, Green GGR, Pearson JP (1992) Otitis-media with effusion - components which contribute to the viscous properties. Acta Otolaryngol (Stockh) 112:504–511CrossRefGoogle Scholar
  3. Cheng JT, Aarnisalo AA, Harrington E, Hernandez-Montes MS, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 263:66–77PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cheng JT, Hamade M, Merchant SN, Rosowski JJ (2013) Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. J Acoust Soc Am 133:918–937PubMedCentralPubMedCrossRefGoogle Scholar
  5. Dai C, Wood MW, Gan RZ (2007) Tympanometry and laser Doppler interferometry measurements on otitis media with effusion model in human temporal bones. Otol Neurotol 28:551–558PubMedCrossRefGoogle Scholar
  6. Dai C, Wood MW, Gan RZ (2008) Combined effect of fluid and pressure on middle ear function. Hear Res 236:22–32PubMedCentralPubMedCrossRefGoogle Scholar
  7. Del Socorro Hernandez-Montes M, Furlong C, Rosowski JJ, Hulli N, Harrington E, Cheng JT, Ravicz ME, Santoyo FM (2009) Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes. J Biomed Opt 14:034023Google Scholar
  8. Djalilian HR, Ridgway J, Tam M, Sepehr A, Chen Z, Wong BJ (2008) Imaging the human tympanic membrane using optical coherence tomography in vivo. Otol Neurotol 29:1091–1094PubMedCentralPubMedCrossRefGoogle Scholar
  9. Fay J, Puria S, Decraemer WF, Steele C (2005) Three approaches for estimating the elastic modulus of the tympanic membrane. J Biomech 38:1807–1815PubMedCrossRefGoogle Scholar
  10. Funnell WR, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467PubMedCrossRefGoogle Scholar
  11. Funnell WR, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851–1859PubMedCrossRefGoogle Scholar
  12. Furlong C, Rosowski JJ, Hulli N, Ravicz ME (2009) Preliminary analyses of tympanic-membrane motion from holographic measurements. Strain 45:301–309PubMedCentralPubMedCrossRefGoogle Scholar
  13. Gan RZ, Wang X (2007) Multifield coupled finite element analysis for sound transmission in otitis media with effusion. J Acoust Soc Am 122:3527–3538PubMedCrossRefGoogle Scholar
  14. Gan RZ, Wood MW, Dormer KJ (2004a) Human middle ear transfer function measured by double laser interferometry system. Otol Neurotol 25:423–435PubMedCrossRefGoogle Scholar
  15. Gan RZ, Feng B, Sun Q (2004b) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859PubMedCrossRefGoogle Scholar
  16. Gan RZ, Sun Q, Feng B, Wood MW (2006a) Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med Eng Phys 28:394–405CrossRefGoogle Scholar
  17. Gan RZ, Dai C, Wood MW (2006b) Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission. J Acoust Soc Am 120:3799–3810PubMedCrossRefGoogle Scholar
  18. Gan RZ, Reeves BP, Wang X (2007) Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng 35:2180–2195PubMedCrossRefGoogle Scholar
  19. Gan RZ, Zhang X, Guan X (2011) Modeling analysis of biomechanical changes of middle ear and cochlea in otitis media. AIP Conf Proc 1403:539–544CrossRefGoogle Scholar
  20. Goode RL (1994) Middle ear transmission disorders by laser-Doppler vibrometry. Acta Otolaryngol 114:679–681PubMedCrossRefGoogle Scholar
  21. Goode RL, Ball G, Nishihara S, Nakamura K (1996) Laser Doppler vibrometer (LDV)–a new clinical tool for the otologist. Am J Otol 17:813–822PubMedGoogle Scholar
  22. Huber AM, Schwab C, Linder T, Stoeckli SJ, Ferrazzini M, Dillier N, Fisch U (2001) Evaluation of eardrum laser Doppler interferometry as a diagnostic tool. Laryngoscope 111:501–507PubMedCrossRefGoogle Scholar
  23. Jakob A, Bornitz M, Kuhlisch E, Zahnert T (2009) New aspects in the clinical diagnosis of otosclerosis using laser Doppler vibrometry. Otol Neurotol 30:1049–1057PubMedCrossRefGoogle Scholar
  24. Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317PubMedCrossRefGoogle Scholar
  25. Lupovich P, Paradise JL, Blueston CD, Harkins M (1971) Middle ear effusions - preliminary viscometric, histologic and biochemical studies. Ann Otol Rhinol Laryngol 80:342–346PubMedCrossRefGoogle Scholar
  26. Maftoon N, Funnell WR, Daniel SJ, Decraemer WF (2013) Experimental study of vibrations of gerbil tympanic membrane with closed middle ear cavity. JARO 14:467–481PubMedCentralPubMedCrossRefGoogle Scholar
  27. Puria S, Allen JB (1998) Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. J Acoust Soc Am 104:3463–3481PubMedCrossRefGoogle Scholar
  28. Rosowski JJ, Mehta RP, Merchant SN (2003) Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane. Otol Neurotol 24:165–175PubMedCentralPubMedCrossRefGoogle Scholar
  29. Rosowski JJ, Nakajima HH, Merchant SN (2008) Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears. Ear Hear 29:3–19PubMedCentralPubMedGoogle Scholar
  30. Rosowski JJ, Cheng JT, Ravicz ME, Hulli N, Hernandez-Montes MS, Harrington E, Furlong C (2009) Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz. Hear Res 253:83–96PubMedCentralPubMedCrossRefGoogle Scholar
  31. Rosowski JJ, Cheng JT, Merchant SN, Harrington E, Furlong C (2011) New data on the motion of the normal and reconstructed tympanic membrane. Otol Neurotol 32:1559–1567PubMedCentralPubMedCrossRefGoogle Scholar
  32. Rovers MM, Schilder AG, Zielhuis GA, Rosenfeld RM (2004) Otitis media. Lancet 363:465–473PubMedCrossRefGoogle Scholar
  33. Sun Q, Gan RZ, Chang KH, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol 1:109–122PubMedCrossRefGoogle Scholar
  34. Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time averaged holography. J Acoust Soc Am 52:1221–1233PubMedCrossRefGoogle Scholar
  35. von Unge M, Bagger-Sjoback D (1994) Tympanic membrane changes in experimental otitis media with effusion. Am J Otol 15:663–669Google Scholar
  36. Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92:3157–3168PubMedCrossRefGoogle Scholar
  37. Wang X, Cheng T, Gan RZ (2007) Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear. J Acoust Soc Am 122:906–917PubMedCrossRefGoogle Scholar
  38. Whittemore KR Jr, Merchant SN, Poon BB, Rosowski JJ (2004) A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV). Hear Res 187:85–104PubMedCrossRefGoogle Scholar
  39. Zhang X, Gan RZ (2011) A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng 58:3024–3027PubMedCrossRefGoogle Scholar
  40. Zhang X, Gan RZ (2013) Finite element modeling of energy absorbance in normal and disordered human ears. Hear Res 301:146–155PubMedCrossRefGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2014

Authors and Affiliations

  • Xiangming Zhang
    • 1
  • Xiying Guan
    • 1
  • Don Nakmali
    • 1
  • Vikrant Palan
    • 2
  • Mario Pineda
    • 2
  • Rong Z. Gan
    • 1
    Email author
  1. 1.School of Aerospace and Mechanical Engineering and Bioengineering CenterUniversity of OklahomaNormanUSA
  2. 2.Polytec Inc.IrvineUSA

Personalised recommendations