Systemic Lipopolysaccharide Induces Cochlear Inflammation and Exacerbates the Synergistic Ototoxicity of Kanamycin and Furosemide

  • Keiko HiroseEmail author
  • Song-Zhe Li
  • Kevin K. Ohlemiller
  • Richard M. Ransohoff
Research Article


Aminoglycoside antibiotics are highly effective agents against gram-negative bacterial infections, but they cause adverse effects on hearing and balance dysfunction as a result of toxicity to hair cells of the cochlea and vestibular organs. While ototoxicity has been comprehensively studied, the contributions of the immune system, which controls the host response to infection, have not been studied in antibiotic ototoxicity. Recently, it has been shown that an inflammatory response is induced by hair cell injury. In this study, we found that lipopolysaccharide (LPS), an important component of bacterial endotoxin, when given in combination with kanamycin and furosemide, augmented the inflammatory response to hair cell injury and exacerbated hearing loss and hair cell injury. LPS injected into the peritoneum of experimental mice induced a brisk cochlear inflammatory response with recruitment of mononuclear phagocytes into the spiral ligament, even in the absence of ototoxic agents. While LPS alone did not affect hearing, animals that received LPS prior to ototoxic agents had worse hearing loss compared to those that did not receive LPS pretreatment. The poorer hearing outcome in LPS-treated mice did not correlate to changes in endocochlear potential. However, LPS-treated mice demonstrated an increased number of CCR2+ inflammatory monocytes in the inner ear when compared with mice treated with ototoxic agents alone. We conclude that LPS and its associated inflammatory response are harmful to the inner ear when coupled with ototoxic medications and that the immune system may contribute to the final hearing outcome in subjects treated with ototoxic agents.


LPS monocyte macrophage cochlea inflammation ototoxicity 



Many thanks to Drs. Mark Warchol and Alec Salt for careful feedback on the manuscript and to Dorina Kallojieri for assistance with statistical analysis. Funding sources supporting this work include NIH DC011315 and a research grant from the American Otological Society.

Conflict of Interest

None of the authors who have authored or provided materials for this work have a financial, personal, or other conflicting interest in the results of this research or publication of this work.

Author Contributions

All authors had full access to the data in this study and take responsibility for the integrity and accuracy of the data analysis. Study concept and design: KH, KKO, RMR. Acquisition of data: SZL, KKO, KH. Analysis and interpretations of the data: KH, KKO, RMR. Writing of the manuscript: KH. Statistical analysis: KH. Funding awarded to: KH. Study supervision: KH.


  1. Arnold W, Nadol JB Jr, Weidauer H (1981) Ultrastructural histopathology in a case of human ototoxicity due to loop diuretics. Acta Otolaryngol 91(5–6):399–414PubMedCrossRefGoogle Scholar
  2. Asakuma S, Snow JB Jr (1980) Effects of furosemide and ethacrynic acid on the endocochlear direct current potential in normal and kanamycin sulfate-treated guinea pigs. Otolaryngol Head Neck Surg 88(2):188–193PubMedGoogle Scholar
  3. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838):666–670. doi: 10.1126/science.1142883 PubMedCrossRefGoogle Scholar
  4. Azuma H, Takeuchi S, Higashiyama K, Ando M, Kakigi A, Nakahira M, Yamakawa K, Takeda T (2002) Bumetanide-induced enlargement of the intercellular space in the stria vascularis requires an active Na + -K + -ATPase. Acta Otolaryngol 122(8):816–821PubMedCrossRefGoogle Scholar
  5. Bauerfeld CP, Rastogi R, Pirockinaite G, Lee I, Huttemann M, Monks B, Birnbaum MJ, Franchi L, Nunez G, Samavati L (2012) TLR4-mediated AKT activation is MyD88/TRIF dependent and critical for induction of oxidative phosphorylation and mitochondrial transcription factor A in murine macrophages. J Immunol 188(6):2847–2857. doi: 10.4049/jimmunol.1102157 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bosmann M, Russkamp NF, Ward PA (2012) Fingerprinting of the TLR4-induced acute inflammatory response. Exp Mol Pathol 93(3):319–323. doi: 10.1016/j.yexmp.2012.08.006 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci Off J Soc Neurosci 25(7):1788–1796. doi: 10.1523/JNEUROSCI.4268-04.2005 CrossRefGoogle Scholar
  8. De Arras L, Seng A, Lackford B, Keikhaee MR, Bowerman B, Freedman JH, Schwartz DA, Alper S (2013) An evolutionarily conserved innate immunity protein interaction network. J Biol Chem 288(3):1967–1978. doi: 10.1074/jbc.M112.407205 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Deng JC, Cheng G, Newstead MW, Zeng X, Kobayashi K, Flavell RA, Standiford TJ (2006) Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J Clin Invest 116(9):2532–2542. doi: 10.1172/JCI28054 PubMedCentralPubMedGoogle Scholar
  10. Ding D, McFadden SL, Woo JM, Salvi RJ (2002) Ethacrynic acid rapidly and selectively abolishes blood flow in vessels supplying the lateral wall of the cochlea. Hear Res 173(1–2):1–9PubMedCrossRefGoogle Scholar
  11. Ehret G (1983) Peripheral anatomy and physiology II. In: Willott J (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, pp 169–200Google Scholar
  12. Figueroa L, Xiong Y, Song C, Piao W, Vogel SN, Medvedev AE (2012) The Asp299Gly polymorphism alters TLR4 signaling by interfering with recruitment of MyD88 and TRIF. J Immunol 188(9):4506–4515. doi: 10.4049/jimmunol.1200202 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fredelius L, Rask-Andersen H (1990) The role of macrophages in the disposal of degeneration products within the organ of corti after acoustic overstimulation. Acta Otolaryngol 109(1–2):76–82PubMedCrossRefGoogle Scholar
  14. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82PubMedCrossRefGoogle Scholar
  15. Guo Y, Wu Y, Chen W, Lin J (1994) Endotoxic damage to the stria vascularis: the pathogenesis of sensorineural hearing loss secondary to otitis media? J Laryngol Otol 108(4):310–313PubMedCrossRefGoogle Scholar
  16. Hequembourg S, Liberman MC (2001) Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol: JARO 2(2):118–129PubMedCentralPubMedGoogle Scholar
  17. Hirose K, Sato E (2011) Comparative analysis of combination kanamycin-furosemide versus kanamycin alone in the mouse cochlea. Hear Res 272(1–2):108–116. doi: 10.1016/j.heares.2010.10.011 PubMedCrossRefGoogle Scholar
  18. Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489(2):180–194PubMedCrossRefGoogle Scholar
  19. Jangula A, Murphy EJ (2013) Lipopolysaccharide-induced blood brain barrier permeability is enhanced by alpha-synuclein expression. Neurosci Lett 551:23–27. doi: 10.1016/j.neulet.2013.06.058 PubMedCrossRefGoogle Scholar
  20. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kang J, Rivest S (2007) MyD88-deficient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis. J Cell Biol 179(6):1219–1230. doi: 10.1083/jcb.200705046 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kim CS, Kim HJ (1995) Auditory brain stem response changes after application of endotoxin to the round window membrane in experimental otitis media. Otolaryngol Head Neck Surg: Off J Am Acad Otolaryngol Head Neck Surg 112(4):557–565CrossRefGoogle Scholar
  23. Komune S, Snow JB Jr (1982) Nature of the endocochlear dc potential in kanamycin-poisoned guinea pigs. Arch Otolaryngol 108(6):334–338PubMedCrossRefGoogle Scholar
  24. Lang H, Schulte BA, Schmiedt RA (2003) Effects of chronic furosemide treatment and age on cell division in the adult gerbil inner ear. J Assoc Res Otolaryngol: JARO 4(2):164–175PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lustig S, Danenberg HD, Kafri Y, Kobiler D, Ben-Nathan D (1992) Viral neuroinvasion and encephalitis induced by lipopolysaccharide and its mediators. J Exp Med 176(3):707–712PubMedCrossRefGoogle Scholar
  26. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP (2009) Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci Off J Soc Neurosci 29(31):9839–9849. doi: 10.1523/JNEUROSCI.2496-09.2009 CrossRefGoogle Scholar
  27. Mathog RH, Thomas WG, Hudson WR (1970) Ototoxicity of new and potent diuretics. A preliminary study. Arch Otolaryngol 92(1):7–13PubMedCrossRefGoogle Scholar
  28. Maus UA, Koay MA, Delbeck T, Mack M, Ermert M, Ermert L, Blackwell TS, Christman JW, Schlondorff D, Seeger W, Lohmeyer J (2002) Role of resident alveolar macrophages in leukocyte traffic into the alveolar air space of intact mice. Am J Physiol Lung Cell Mol Physiol 282(6):L1245–L1252. doi: 10.1152/ajplung.00453.2001 PubMedGoogle Scholar
  29. Nadeau S, Rivest S (2002) Endotoxemia prevents the cerebral inflammatory wave induced by intraparenchymal lipopolysaccharide injection: role of glucocorticoids and CD14. J Immunol 169(6):3370–3381PubMedCrossRefGoogle Scholar
  30. Nahid MA, Satoh M, Chan EK (2011) MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8(5):388–403. doi: 10.1038/cmi.2011.26 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Naito H, Watanabe K (1997) Alteration in capillary permeability of horseradish peroxidase in the stria vascularis and movement of leaked horseradish peroxidase after administration of furosemide. ORL J Otorhinolaryngol Relat Spec 59(5):248–257PubMedCrossRefGoogle Scholar
  32. Nishioku T, Dohgu S, Takata F, Eto T, Ishikawa N, Kodama KB, Nakagawa S, Yamauchi A, Kataoka Y (2009) Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol 29(3):309–316. doi: 10.1007/s10571-008-9322-x PubMedCrossRefGoogle Scholar
  33. O'Dea KP, Wilson MR, Dokpesi JO, Wakabayashi K, Tatton L, van Rooijen N, Takata M (2009) Mobilization and margination of bone marrow Gr-1high monocytes during subclinical endotoxemia predisposes the lungs toward acute injury. J Immunol 182(2):1155–1166PubMedCentralPubMedCrossRefGoogle Scholar
  34. Oesterle EC, Campbell S (2009) Supporting cell characteristics in long-deafened aged mouse ears. J Assoc Res Otolaryngol: JARO 10(4):525–544. doi: 10.1007/s10162-009-0183-x PubMedCentralPubMedCrossRefGoogle Scholar
  35. Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol: JARO 9(1):65–89. doi: 10.1007/s10162-007-0106-7 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Oh GS, Kim HJ, Choi JH, Shen A, Kim CH, Kim SJ, Shin SR, Hong SH, Kim Y, Park C, Lee SJ, Akira S, Park R, So HS (2011) Activation of lipopolysaccharide-TLR4 signaling accelerates the ototoxic potential of cisplatin in mice. J Immunol 186(2):1140–1150. doi: 10.4049/jimmunol.1002183 PubMedCrossRefGoogle Scholar
  37. Ohlemiller KK (2009) Mechanisms and genes in human strial presbycusis from animal models. Brain Res 1277:70–83. doi: 10.1016/j.brainres.2009.02.079 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Quintanilla-Dieck L, Larrain B, Trune D, Steyger PS (2013) Effect of systemic lipopolysaccharide-induced inflammation on cytokine levels in the murine cochlea: a pilot study. Otolaryngol Head Neck Surg: Off J Am Acad Otolaryngol Head Neck Surg 149(2):301–303. doi: 10.1177/0194599813491712 CrossRefGoogle Scholar
  39. Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP (2004) Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke 35(11):2576–2581PubMedCrossRefGoogle Scholar
  40. Rybak LP (1993) Ototoxicity of loop diuretics. Otolaryngol Clin N Am 26(5):829–844Google Scholar
  41. Rybak LP, Whitworth C, Scott V (1991) Comparative acute ototoxicity of loop diuretic compounds. Eur Arch Otorhinolaryngol 248(6):353–357PubMedGoogle Scholar
  42. Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5(10):e13693. doi: 10.1371/journal.pone.0013693 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Saha P, Geissmann F (2011) Toward a functional characterization of blood monocytes. Immunol Cell Biol 89(1):2–4. doi: 10.1038/icb.2010.130 PubMedCrossRefGoogle Scholar
  44. Sato E, Shick HE, Ransohoff RM, Hirose K (2008) Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. J Comp Neurol 506(6):930–942PubMedCrossRefGoogle Scholar
  45. Sato E, Shick HE, Ransohoff RM, Hirose K (2010) Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. J Assoc Res Otolaryngol: JARO 11(2):223–234. doi: 10.1007/s10162-009-0198-3 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi: 10.1126/science.1219179 PubMedCrossRefGoogle Scholar
  47. Sewell WF (1984) Furosemide selectively reduces one component in rate-level functions from auditory-nerve fibers. Hear Res 15(1):69–72PubMedCrossRefGoogle Scholar
  48. Shi J, Johansson J, Woodling NS, Wang Q, Montine TJ, Andreasson K (2010) The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity. J Immunol 184(12):7207–7218. doi: 10.4049/jimmunol.0903487 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Simard AR, Rivest S (2007) Neuroprotective effects of resident microglia following acute brain injury. J Comp Neurol 504(6):716–729. doi: 10.1002/cne.21469 PubMedCrossRefGoogle Scholar
  50. Tan BT, Lee MM, Ruan R (2008) Bone-marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J Comp Neurol 509(2):167–179. doi: 10.1002/cne.21729 PubMedCrossRefGoogle Scholar
  51. Tauseef M, Knezevic N, Chava KR, Smith M, Sukriti S, Gianaris N, Obukhov AG, Vogel SM, Schraufnagel DE, Dietrich A, Birnbaumer L, Malik AB, Mehta D (2012) TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. J Exp Med 209(11):1953–1968. doi: 10.1084/jem.20111355 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Taylor RR, Nevill G, Forge A (2008) Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol: JARO 9(1):44–64PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tornabene SV, Sato K, Pham L, Billings P, Keithley EM (2006) Immune cell recruitment following acoustic trauma. Hear Res 222(1-2):115–124. doi: 10.1016/j.heares.2006.09.004 PubMedCrossRefGoogle Scholar
  54. Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol: JARO 3(3):248–268PubMedCentralPubMedCrossRefGoogle Scholar
  55. Wang W, Deng M, Liu X, Ai W, Tang Q, Hu J (2011) TLR4 activation induces nontolerant inflammatory response in endothelial cells. Inflammation 34(6):509–518. doi: 10.1007/s10753-010-9258-4 PubMedCrossRefGoogle Scholar
  56. Warchol ME (1997) Macrophage activity in organ cultures of the avian cochlea: demonstration of a resident population and recruitment to sites of hair cell lesions. J Neurobiol 33(6):724–734. doi: 10.1002/(SICI)1097-4695(19971120)33:6<724::AID-NEU2>3.0.CO;2-B PubMedCrossRefGoogle Scholar
  57. Wispelwey B, Lesse AJ, Hansen EJ, Scheld WM (1988) Haemophilus influenzae lipopolysaccharide-induced blood brain barrier permeability during experimental meningitis in the rat. J Clin Invest 82(4):1339–1346. doi: 10.1172/JCI113736 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Wu WJ, Sha SH, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague-Dawley rat. Hear Res 158(1–2):165–178PubMedCrossRefGoogle Scholar
  59. Xiong Y, Medvedev AE (2011) Induction of endotoxin tolerance in vivo inhibits activation of IRAK4 and increases negative regulators IRAK-M, SHIP-1, and A20. J Leukoc Biol 90(6):1141–1148. doi: 10.1189/jlb.0611273 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2014

Authors and Affiliations

  • Keiko Hirose
    • 1
    Email author
  • Song-Zhe Li
    • 1
  • Kevin K. Ohlemiller
    • 1
  • Richard M. Ransohoff
    • 2
  1. 1.Department of OtolaryngologyWashington University School of MedicineSt. LouisUSA
  2. 2.Neuroinflammation Research Center, Department of NeurosciencesCleveland Clinic Lerner Research InstituteClevelandUSA

Personalised recommendations