Changes in Cochlear PMCA2 Expression Correlate with the Maturation of Auditory Sensitivity

  • Claire J. Watson
  • Sarah M. Lies
  • Rebecca R. Minich
  • Bruce L Tempel
Research Article

ABSTRACT

The plasma membrane Ca2+ ATPase 2 (PMCA2) is necessary for auditory transduction and serves as the primary Ca2+ extrusion mechanism in auditory stereocilia bundles. To date, studies examining PMCA2 in auditory function using mutant mice have focused on the phenotype of late adolescent and adult mice. Here, we focus on the changes of PMCA2 in the maturation of auditory sensitivity by comparing auditory responses to RNA and protein expression levels in haploinsufficient PMCA2 and wild-type mice from P16 into adulthood. Auditory sensitivity in wild-type mice improves between P16 and 3 weeks of age, when it becomes stable through adolescence. In haploinsufficient mice, there are frequency-dependent loss of sensitivity and subsequent recovery of thresholds between P16 and adulthood. RNA analysis demonstrates that α-Atp2b2 transcript levels increase in both wild-type and heterozygous cochleae between P16 and 5 weeks. The increases reported for the α-Atp2b2 transcript type during this stage in development support the requisite usage of this transcript for mature auditory transduction. PMCA2 expression also increases in wild-type cochleae between P16 and 5 weeks suggesting that this critical auditory protein may be involved in normal maturation of auditory sensitivity after the onset of hearing. We also characterize expression levels of two long noncoding RNA genes, Gm15082 (lnc82) and Gm15083 (lnc83), which are transcribed on the opposite strand in the 5′ region of Atp2b2 and propose that the lnc83 transcript may be involved in regulating α-Atp2b2 expression.

Keywords

Atp2b2 hearing development cochlea noncoding RNA 

REFERENCES

  1. Beurg M, Evans MG, Hackney CM, Fettiplace R (2006) A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells. J Neurosci Off J Soc Neurosci 26:10992–11000CrossRefGoogle Scholar
  2. Bortolozzi M, Brini M, Parkinson N, Crispino G, Scimemi P, De Siati RD, Di Leva F, Parker A, Ortolano S, Arslan E, Brown SD, Carafoli E, Mammano F (2010) The novel PMCA2 pump mutation Tommy impairs cytosolic calcium clearance in hair cells and links to deafness in mice. J Biol Chem 285:37693–37703PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196PubMedCrossRefGoogle Scholar
  4. Chen Q, Mahendrasingam S, Tickle JA, Hackney CM, Furness DN, Fettiplace R (2012) The development, distribution and density of the plasma membrane calcium ATPase 2 calcium pump in rat cochlear hair cells. Eur J Neurosci 36:2302–2310PubMedCentralPubMedCrossRefGoogle Scholar
  5. Consortium EP et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74CrossRefGoogle Scholar
  6. Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+−ATPase isoform 2a is the PMCA of hair bundles. J Neurosci Off J Soc Neurosci 21:5066–5078Google Scholar
  7. Echteler SM, Arjmand E, Dallos P (1989) Developmental alterations in the frequency map of the mammalian cochlea. Nature 341:147–149PubMedCrossRefGoogle Scholar
  8. Emadi G, Richter CP (2008) Developmental changes of mechanics measured in the gerbil cochlea. J Assoc Res Otolaryngol 9:22–32PubMedCentralPubMedCrossRefGoogle Scholar
  9. Evans BN, Dallos P (1993) Stereocilia displacement induced somatic motility of cochlear outer hair cells. Proc Natl Acad Sci U S A 90:8347–8351PubMedCentralPubMedCrossRefGoogle Scholar
  10. Furuta H, Luo L, Hepler K, Ryan AF (1998) Evidence for differential regulation of calcium by outer versus inner hair cells: plasma membrane Ca-ATPase gene expression. Hear Res 123:10–26PubMedCrossRefGoogle Scholar
  11. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419PubMedCentralPubMedCrossRefGoogle Scholar
  12. Kelley MW (2006) Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7:837–849PubMedCrossRefGoogle Scholar
  13. Kozel PJ, Friedman RA, Erway LC, Yamoah EN, Liu LH, Riddle T, Duffy JJ, Doetschman T, Miller ML, Cardell EL, Shull GE (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+−ATPase isoform 2. J Biol Chem 273:18693–18696PubMedCrossRefGoogle Scholar
  14. Kraus HJ, Aulbach-Kraus K (1981) Morphological changes in the cochlea of the mouse after the onset of hearing. Hear Res 4:89–102PubMedCrossRefGoogle Scholar
  15. Lumpkin EA, Hudspeth AJ (1998) Regulation of free Ca2+ concentration in hair-cell stereocilia. J Neurosci Off J Soc Neurosci 18:6300–6318Google Scholar
  16. Maamar H, Cabili MN, Rinn J, Raj A (2013) linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Gene Dev 27:1260–1271PubMedCentralPubMedCrossRefGoogle Scholar
  17. McCullough BJ, Tempel BL (2004) Haplo-insufficiency revealed in deafwaddler mice when tested for hearing loss and ataxia. Hear Res 195:90–102PubMedCrossRefGoogle Scholar
  18. Mikaelian D, Ruben RJ (1965) Development of hearing in the normal Cba-J mouse: correlation of physiological observations with behavioral responses and with cochlear anatomy. Acta Otolaryngol 59:451–461CrossRefGoogle Scholar
  19. Mills DM, Rubel EW (1996) Development of the cochlear amplifier. J Acoust Soc Am 100:428–441PubMedCrossRefGoogle Scholar
  20. Muller M (1996) The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hear Res 94:148–156PubMedCrossRefGoogle Scholar
  21. Overstreet EH, Temchin AN, Ruggero MA (2002) Passive basilar membrane vibrations in gerbil neonates: mechanical bases of cochlear maturation. J Physiol 545:279–288PubMedCentralPubMedCrossRefGoogle Scholar
  22. Prosen CA, Petersen MR, Moody DB, Stebbins WC, Hawkins JE Jr (1978) Permanent threshold shift and cochlear hair cell loss in the kanamycin-treated guinea pig. Otolaryngology 86:ORL-886–ORL-887Google Scholar
  23. Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40:983–990PubMedCrossRefGoogle Scholar
  24. Ryan A, McGee TJ (1977) Development of hearing loss in kanamycin treated chinchillas. Ann Otol Rhinol Laryngol 86:176–182PubMedGoogle Scholar
  25. Sadanaga M, Morimitsu T (1995) Development of endocochlear potential and its negative component in mouse cochlea. Hear Res 89:155–161PubMedCrossRefGoogle Scholar
  26. Shnerson A, Pujol R (1981) Age-related changes in the C57BL/6J mouse cochlea. I. Physiological findings. Brain Res 254:65–75PubMedCrossRefGoogle Scholar
  27. Shnerson A, Devigne C, Pujol R (1981) Age-related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings. Brain Res 254:77–88PubMedCrossRefGoogle Scholar
  28. Silverstein RS, Tempel BL (2006) Atp2b2, encoding plasma membrane Ca2+−ATPase type 2, (PMCA2) exhibits tissue-specific first exon usage in hair cells, neurons, and mammary glands of mice. Neuroscience 141:245–257PubMedCrossRefGoogle Scholar
  29. Song L, McGee J, Walsh EJ (2006) Frequency- and level-dependent changes in auditory brainstem responses (ABRs) in developing mice. J Acoust Soc Am 119:2242PubMedCrossRefGoogle Scholar
  30. Song L, McGee J, Walsh EJ (2008) Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse. J Neurophys 99:344–355CrossRefGoogle Scholar
  31. Spiden SL, Bortolozzi M, Di Leva F, de Angelis MH, Fuchs H, Lim D, Ortolano S, Ingham NJ, Brini M, Carafoli E, Mammano F, Steel KP (2008) The novel mouse mutation oblivion inactivates the PMCA2 pump and causes progressive hearing loss. PLoS Genet 4:e1000238PubMedCentralPubMedCrossRefGoogle Scholar
  32. Stebbins WC, Hawkins JE Jr, Johnson LG, Moody DB (1979) Hearing thresholds with outer and inner hair cell loss. Am J Otolaryngol 1:15–27PubMedCrossRefGoogle Scholar
  33. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+−ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394PubMedCrossRefGoogle Scholar
  34. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914PubMedCentralPubMedCrossRefGoogle Scholar
  35. Watson CJ, Tempel BL (2013) A new Atp2b2 deafwaddler allele, dfw(i5), interacts strongly with Cdh23 and other auditory modifiers. Hear Res 304:41–48PubMedCrossRefGoogle Scholar
  36. Wood JD, Muchinsky SJ, Filoteo AG, Penniston JT, Tempel BL (2004) Low endolymph calcium concentrations in deafwaddler2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol 5:99–110PubMedCentralPubMedCrossRefGoogle Scholar
  37. Woolf NK, Ryan AF, Harris JP (1986) Development of mammalian endocochlear potential: normal ontogeny and effects of anoxia. Am J Physiol 250:R493–R498PubMedGoogle Scholar
  38. Yamoah EN, Lumpkin EA, Dumont RA, Smith PJ, Hudspeth AJ, Gillespie PG (1998) Plasma membrane Ca2+−ATPase extrudes Ca2+ from hair cell stereocilia. J Neurosci Off J Soc Neurosci 18:610–624Google Scholar
  39. Yu X, Sanes DH, Aristizabal O, Wadghiri YZ, Turnbull DH (2007) Large-scale reorganization of the tonotopic map in mouse auditory midbrain revealed by MRI. Proc Natl Acad Sci U S A 104:12193–12198PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2014

Authors and Affiliations

  • Claire J. Watson
    • 1
    • 3
    • 4
  • Sarah M. Lies
    • 2
    • 4
  • Rebecca R. Minich
    • 3
    • 4
  • Bruce L Tempel
    • 1
    • 3
    • 4
  1. 1.Department of Otolaryngology—Head and Neck SurgeryUniversity of WashingtonSeattleUSA
  2. 2.Department of Speech and Hearing SciencesUniversity of WashingtonSeattleUSA
  3. 3.Department of PharmacologyUniversity of WashingtonSeattleUSA
  4. 4.The Virginia Merrill Bloedel Hearing Research CenterUniversity of WashingtonSeattleUSA

Personalised recommendations