Advertisement

Full-Field Thickness Distribution of Human Tympanic Membrane Obtained with Optical Coherence Tomography

  • Sam Van der Jeught
  • Joris J. J. Dirckx
  • Johan R. M. Aerts
  • Adrian Bradu
  • Adrian Gh Podoleanu
  • Jan A. N. Buytaert
Research Article

Abstract

The full-field thickness distribution, three-dimensional surface model and general morphological data of six human tympanic membranes are presented. Cross-sectional images were taken perpendicular through the membranes using a high-resolution optical coherence tomography setup. Five normal membranes and one membrane containing a pathological site are included in this study. The thickness varies strongly across each membrane, and a great deal of inter-specimen variability can be seen in the measurement results, though all membranes show similar features in their respective relative thickness distributions. Mean thickness values across the pars tensa ranged between 79 and 97 μm; all membranes were thinnest in the central region between umbo and annular ring (50–70 μm), and thickness increased steeply over a small distance to approximately 100–120 μm when moving from the central region either towards the peripheral rim of the pars tensa or towards the manubrium. Furthermore, a local thickening was noticed in the antero–inferior quadrant of the membranes, and a strong linear correlation was observed between inferior–posterior length and mean thickness of the membrane. These features were combined into a single three-dimensional model to form an averaged representation of the human tympanic membrane. 3D reconstruction of the pathological tympanic membrane shows a structural atrophy with retraction pocket in the inferior portion of the pars tensa. The change of form at the pathological site of the membrane corresponds well with the decreased thickness values that can be measured there.

Keywords

eardrum OCT finite element modeling pars tensa 3D model 

Notes

Acknowledgments

The authors thank Dr. M. von Unge for his much appreciated help in the diagnosis of the pathological membrane TMP. S. Van der Jeught and J. Buytaert acknowledge the support of the Research Foundation–Flanders (FWO), J. Aerts acknowledges the support of the Flemish Agency for Innovation by Science and Technology (IWT) and A. Bradu and A. Podoleanu acknowledge the support of the ERC grant COGATIMABIO, 249889.

References

  1. Abel EW, Lord RM (2001) A finite-element model for evaluation of middle ear mechanics. In: Eng Med Biol Soc. Proceedings of the 23rd Annual International Conference of the IEEE., pp 2110–2112Google Scholar
  2. Aernouts J, Aerts JR, Dirckx JJ (2012) Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Hear Res 290:45–54PubMedCrossRefGoogle Scholar
  3. Bibas AG, Podoleanu AGH, Cucu RG, Dobre GM, Odell E, Boxer AB et al (2004) Optical coherence tomography in otolaryngology: original results and review of the literature. Proc SPIE 5312:190–195CrossRefGoogle Scholar
  4. Bradu A, Podoleanu AGH, Rosen RB (2005) High-speed en-face optical coherence tomography system for the retina. Journal of Optoelectronics and Advanced Materials 7(6):2913–2918Google Scholar
  5. Buytaert JA, Salih WH, Dierick M, Jacobs P, Dirckx JJ (2011) Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures. J Assoc Res Otolaryngol 12:681–696PubMedCrossRefGoogle Scholar
  6. Buytaert JA, Van der Jeught S, Ars B, Podoleanu AGH, Dirckx JJJ (2013) Preliminary human tympanic membrane thickness data from optical coherence tomography. Opt Meas Tech Struct Syst Shaker Publishing 75–84. ISBN 978-90-423-0419-2Google Scholar
  7. Cheng T, Dai C, Gan RZ (2007) Viscoelastic properties of human tympanic membrane. Ann Biomed Eng 35:305–314PubMedCrossRefGoogle Scholar
  8. Daphalapurkar NP, Dai C, Gan RZ, Lu H (2009) Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. J Mech Behav Biomed Mater 2:82–92PubMedCrossRefGoogle Scholar
  9. Decraemer WF, Funnell WRJ (2008) Anatomical and mechanical properties of the tympanic membrane. In: Chronic otitis media. Pathogenesis-oriented therapeutic management. Kugler, The HagueGoogle Scholar
  10. Dirckx JJ, Kuypers LC, Decraemer WF (2005) Refractive index of tissue measured with confocal microscopy. J Biomed Optics 10(4):044014–044014CrossRefGoogle Scholar
  11. Djalilian HR, Ridgway J, Tam M, Sepehr A, Chen Z, Wong BJ (2008) Imaging the human tympanic membrane using optical coherence tomography in vivo. Otol Neurotol 29:10911094Google Scholar
  12. Fox CH, Johnson FB, Whiting J, Roller PP (1985) Formaldehyde fixation. J Histochem Cytochem 33(8):845–853PubMedCrossRefGoogle Scholar
  13. Funnell WRJ, Laszlo CA (1982) A critical review of experimental observations on ear-drum structure and function. J Otorhinolaryngol Relat Spec 44:181–205CrossRefGoogle Scholar
  14. Gaihede M, Liao D, Gregersen H (2007) In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modeling of middle ear mechanical function in normal young and aged ears. Phys Med Biol 52:803–814PubMedCrossRefGoogle Scholar
  15. Gan RZ, Feng B, Sun Q (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859PubMedCrossRefGoogle Scholar
  16. Gan RZ, Dai C, Wang X, Nakmali D, Wood MW (2010) A totally implantable hearing system—design and function characterization in 3D computational model and temporal bones. Hearing Research 263(1):138–144PubMedCrossRefGoogle Scholar
  17. Hildebrand T, Rüegsegger P (2003) A new method for the model‐independent assessment of thickness in three‐dimensional images. J Microsc 185:67–75CrossRefGoogle Scholar
  18. Hopwood D (1967) Some aspects of fixation with glutaraldehyde. J Anatomy 101(1):83–92Google Scholar
  19. Huang G, Daphalapurkar NP, Gan RZ, Lu H (2008) A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J Biomech Eng 130:014501PubMedCrossRefGoogle Scholar
  20. Jonmarker S, Valdman A, Lindberg A, Hellström M, Egevad L (2006) Tissue shrinkage after fixation with formalin injection of prostatectomy specimens. Virchows Archiv An Int J Pathol 449(3):297–301CrossRefGoogle Scholar
  21. Just T, Lankenau E, Hüttmann G, Pau HW (2009) Optical coherence tomography of the oval window niche. J Laryngol Otol 123:603–608PubMedCrossRefGoogle Scholar
  22. Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317PubMedCrossRefGoogle Scholar
  23. Kojo Y (1954) Morphological studies of the human tympanic membrane. J Otolaryngol Jpn 57:115–126Google Scholar
  24. Kuypers LC, Decraemer WF, Dirckx JJ (2006) Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy. Otol Neurotol 27:256–264PubMedCrossRefGoogle Scholar
  25. Le CD, Huynh QL (2008) Mathematical models of human middle ear in chronic otitis media. Proc Inf Technol Appl Biomed:426–429Google Scholar
  26. Lee CF, Chen PR, Lee WJ, Chen JH, Liu TC (2006) Computer aided three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis. Biomed Eng Appl Basis Commun 18:214CrossRefGoogle Scholar
  27. Lim DJ (1970) Human tympanic membrane: an ultrastructural observation. Acta Otolaryngol 70:176–186PubMedCrossRefGoogle Scholar
  28. Lin TY, Yu JF, Chen CK (2011) Magnetic resonance imaging of the in vivo human tympanic membrane. Chang Gung Med J 34:166–71PubMedGoogle Scholar
  29. Luo H, Dai C, Gan RZ, Lu H (2009) Measurement of young's modulus of human tympanic membrane at high strain rates. J Biomech Eng 131:064501PubMedCrossRefGoogle Scholar
  30. Metscher BD (2009) Micro-CT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. Biomed Centr Physiol 9:11Google Scholar
  31. Nguyen CT, Jung W, Kim J, Chaney EJ, Novak M, Stewart CN, Boppart SA (2012) Noninvasive in vivo optical detection of biofilm in the human middle ear. Proc Nat Acad Sci 109(24):9529–9534PubMedCrossRefGoogle Scholar
  32. Pitris C, Saunders KT, Fujimoto JG, Brezinski ME (2001) High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study. Arch Otolaryngol Head Neck Surg 127:637642CrossRefGoogle Scholar
  33. Prendergast PJ, Ferris P, Rice HJ, Blayney AW (1999) Vibro-acoustic modelling of the outer and middle ear using the finite-element method. Audiol Neurootol 4:185–191PubMedCrossRefGoogle Scholar
  34. Ruah CB, Schachern PA, Zelterman D, Paparella MM, Yoon TH (1991) Age-related morphologic changes in the human tympanic membrane. A light and electron microscopic study. Arch Otolaryngol Head Neck Surg 117:627–634PubMedCrossRefGoogle Scholar
  35. Schmidt SH, Hellström S (1991) Tympanic-membrane structure—new views. J Otorhinolaryngol Relat Spec 53:32–36CrossRefGoogle Scholar
  36. Song YL, Lee CF (2012) Computer-aided modeling of sound transmission of the human middle ear and its otological applications using finite element analysis. Tzu Chi Med J 24:178–180CrossRefGoogle Scholar
  37. Sun Q, Gan RZ, Chang KH, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomechanics Modeling Mechanobiol 1(2):109–122CrossRefGoogle Scholar
  38. Trifanov I, Caldas P, Neagu L, Romero R, Berendt MO, Salcedo JAR, Ribeiro ABL (2011) Combined neodymium–ytterbium-doped ASE fiber-optic source for optical coherence tomography applications. Photonics Technology Letters IEEE 23(1):21–23CrossRefGoogle Scholar
  39. Uebo K, Kodama A, Oka Y, Ishii T (1988) Thickness of normal human tympanic membrane. Ear Res Jpn 19:70–73Google Scholar
  40. Van der Jeught S, Buytaert J, Bradu A, Podoleanu AGH, Dirckx JJJ (2013) Real-time correction of geometric distortion artifacts in large-volume optical coherence tomography. Meas Sci Technol 24. doi: 10.1088/0957-0233/24/5/057001
  41. Van der Jeught S, Buytaert J, Bradu A, Podoleanu AGH, Dirckx JJJ (2012) Large-volume optical coherence tomography with real-time correction of geometric distortion artifacts. Recent Advances in Topography. Publ. Nova Science Publishers, New York. http://arxiv.org/abs/1212.1595
  42. Volandri G, Di Puccio F, Forte P, Carmignani C (2011) Biomechanics of the tympanic membrane. J Biomech 44:1219–1236PubMedCrossRefGoogle Scholar
  43. Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite‐element method. J Acoust Soc Am 92:3157–3168PubMedCrossRefGoogle Scholar
  44. Wen YH, Hsu LP, Chen PR, Lee CF (2006) Design optimization of cartilage myringoplasty using finite element analysis. Tzu Chi Med J 18:370–377Google Scholar
  45. Zhao F, Koike T, Wang J, Sienz H, Meredith R (2009) Finite element analysis of the middle ear transfer functions and related pathologies. Med Eng Phys 31:907–916PubMedCrossRefGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2013

Authors and Affiliations

  • Sam Van der Jeught
    • 1
  • Joris J. J. Dirckx
    • 1
  • Johan R. M. Aerts
    • 1
  • Adrian Bradu
    • 2
  • Adrian Gh Podoleanu
    • 2
  • Jan A. N. Buytaert
    • 1
  1. 1.Laboratory of Biomedical PhysicsUniversity of AntwerpAntwerpBelgium
  2. 2.Applied Optics Group, School of Physical SciencesUniversity of KentCanterburyUK

Personalised recommendations