Monopolar Intracochlear Pulse Trains Selectively Activate the Inferior Colliculus

  • Matthew C. Schoenecker
  • Ben H. Bonham
  • Olga A. Stakhovskaya
  • Russell L. Snyder
  • Patricia A. Leake
Research Article


Previous cochlear implant studies using isolated electrical stimulus pulses in animal models have reported that intracochlear monopolar stimulus configurations elicit broad extents of neuronal activation within the central auditory system—much broader than the activation patterns produced by bipolar electrode pairs or acoustic tones. However, psychophysical and speech reception studies that use sustained pulse trains do not show clear performance differences for monopolar versus bipolar configurations. To test whether monopolar intracochlear stimulation can produce selective activation of the inferior colliculus, we measured activation widths along the tonotopic axis of the inferior colliculus for acoustic tones and 1,000-pulse/s electrical pulse trains in guinea pigs and cats. Electrical pulse trains were presented using an array of 6–12 stimulating electrodes distributed longitudinally on a space-filling silicone carrier positioned in the scala tympani of the cochlea. We found that for monopolar, bipolar, and acoustic stimuli, activation widths were significantly narrower for sustained responses than for the transient response to the stimulus onset. Furthermore, monopolar and bipolar stimuli elicited similar activation widths when compared at stimulus levels that produced similar peak spike rates. Surprisingly, we found that in guinea pigs, monopolar and bipolar stimuli produced narrower sustained activation than 60 dB sound pressure level acoustic tones when compared at stimulus levels that produced similar peak spike rates. Therefore, we conclude that intracochlear electrical stimulation using monopolar pulse trains can produce activation patterns that are at least as selective as bipolar or acoustic stimulation.


cochlear implant auditory midbrain neurophysiology electrical stimulation 


  1. Aitkin L, Tran L, Syka J (1994) The responses of neurons in subdivisions of the inferior colliculus of cats to tonal, noise and vocal stimuli. Exp Brain Res 98:53–64PubMedCrossRefGoogle Scholar
  2. Bierer JA (2007) Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration. J Acoust Soc Am 121:1642–1653PubMedCrossRefGoogle Scholar
  3. Bierer JA, Middlebrooks JC (2002) Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration. J Neurophysiol 87:478–492PubMedGoogle Scholar
  4. Bierer JA, Bierer SM, Middlebrooks JC (2010) Partial tripolar cochlear implant stimulation: spread of excitation and forward masking in the inferior colliculus. Hear Res 270:134–142PubMedCrossRefGoogle Scholar
  5. Boex C, Kos MI, Pelizzone M (2003a) Forward masking in different cochlear implant systems. J Acoust Soc Am 114:2058–2065PubMedCrossRefGoogle Scholar
  6. Boex C, de Balthasar C, Kos MI, Pelizzone M (2003b) Electrical field interactions in different cochlear implant systems. J Acoust Soc Am 114:2049–2057PubMedCrossRefGoogle Scholar
  7. Boex C, Baud L, Cosendai G, Sigrist A, Kos MI, Pelizzone M (2006) Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing. J Assoc Res Otolaryngol 7:110–124PubMedCrossRefGoogle Scholar
  8. Bonham BH, Litvak LM (2008) Current focusing and steering: modeling, physiology, and psychophysics. Hear Res 242:141–153PubMedCrossRefGoogle Scholar
  9. Chen Z, Hu G, Glasberg BR, Moore BC (2011) A new method of calculating auditory excitation patterns and loudness for steady sounds. Hear Res 2011:10Google Scholar
  10. Cohen LT, Saunders E, Clark GM (2001) Psychophysics of a prototype peri-modiolar cochlear implant electrode array. Hear Res 155:63–81PubMedCrossRefGoogle Scholar
  11. Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684–1689PubMedCrossRefGoogle Scholar
  12. Egorova M, Ehret G (2008) Tonotopy and inhibition in the midbrain inferior colliculus shape spectral resolution of sounds in neural critical bands. Eur J Neurosci 28:675–692PubMedCrossRefGoogle Scholar
  13. Ehret G, Merzenich MM (1988) Neuronal discharge rate is unsuitable for encoding sound intensity at the inferior-colliculus level. Hear Res 35:1–7PubMedCrossRefGoogle Scholar
  14. Finley CC, Holden TA, Holden LK, Whiting BR, Chole RA, Neely GJ, Hullar TE, Skinner MW (2008) Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol 29:920–928PubMedCrossRefGoogle Scholar
  15. Friesen LM, Shannon RV, Cruz RJ (2005) Effects of stimulation rate on speech recognition with cochlear implants. Audiol Neurootol 10:169–184PubMedCrossRefGoogle Scholar
  16. Harris DM, Shannon RV, Snyder R, Carney E (1997) Multi-unit mapping of acoustic stimuli in gerbil inferior colliculus. Hear Res 108:145–156PubMedCrossRefGoogle Scholar
  17. Kileny PR, Zwolan TA, Telian SA, Boerst A (1998) Performance with the 20 + 2 L lateral wall cochlear implant. Am J Otol 19:313–319PubMedGoogle Scholar
  18. Kral A, Hartmann R, Mortazavi D, Klinke R (1998) Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear Res 121:11–28PubMedCrossRefGoogle Scholar
  19. Kwon BJ, van den Honert C (2006) Effect of electrode configuration on psychophysical forward masking in cochlear implant listeners. J Acoust Soc Am 119:2994–3002PubMedCrossRefGoogle Scholar
  20. Leake PA, Hradek GT, Snyder RL (1999) Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 412:543–562PubMedCrossRefGoogle Scholar
  21. Lee CF, Li GJ, Wan SY, Lee WJ, Tzen KY, Chen CH, Song YL, Chou YF, Chen YS, Liu TC (2010) Registration of micro-computed tomography and histological images of the guinea pig cochlea to construct an ear model using an iterative closest point algorithm. Ann Biomed Eng 38:1719–1727PubMedCrossRefGoogle Scholar
  22. Liang DH, Lusted HS, White RL (1999) The nerve-electrode interface of the cochlear implant: current spread. IEEE Trans Biomed Eng 46:35–43PubMedCrossRefGoogle Scholar
  23. Liberman MC (1982) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449PubMedCrossRefGoogle Scholar
  24. Merzenich MM, White MW (1977) Cochlear implant: the interface problem. In: Hambrecht FT, Reswich JB (eds) Functional electrical stimulation: applications in neural prosthesis. Dekker, New York, pp 321–340Google Scholar
  25. Middlebrooks JC (2004) Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds. J Acoust Soc Am 116:452–468PubMedCrossRefGoogle Scholar
  26. Middlebrooks JC (2008) Auditory cortex phase locking to amplitude-modulated cochlear implant pulse trains. J Neurophysiol 100:76–91PubMedCrossRefGoogle Scholar
  27. Middlebrooks JC, Snyder RL (2007) Auditory prosthesis with a penetrating nerve array. J Assoc Res Otolaryngol 8(2):258–279PubMedCrossRefGoogle Scholar
  28. Middlebrooks JC, Snyder RL (2008) Intraneural stimulation for auditory prosthesis: modiolar trunk and intracranial stimulation sites. Hear Res 242:52–63PubMedCrossRefGoogle Scholar
  29. Morris DJ, Pfingst BE (2000) Effects of electrode configuration and stimulus level on rate and level discrimination with cochlear implants. J Assoc Res Otolaryngol 1:211–223PubMedCrossRefGoogle Scholar
  30. Nelson DA, Donaldson GS, Kreft H (2008) Forward-masked spatial tuning curves in cochlear implant users. J Acoust Soc Am 123:1522–1543PubMedCrossRefGoogle Scholar
  31. Nuding SC, Chen GD, Sinex DG (1999) Monaural response properties of single neurons in the chinchilla inferior colliculus. Hear Res 131:89–106PubMedCrossRefGoogle Scholar
  32. Pfingst BE, Franck KH, Xu L, Bauer EM, Zwolan TA (2001) Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses. J Assoc Res Otolaryngol 2:87–103PubMedGoogle Scholar
  33. Ramachandran R, Davis KA, May BJ (1999) Single-unit responses in the inferior colliculus of decerebrate cats. I. Classification based on frequency response maps. J Neurophysiol 82:152–163PubMedGoogle Scholar
  34. Rebscher SJ, Snyder RL, Leake PA (2001) The effect of electrode configuration and duration of deafness on threshold and selectivity of responses to intracochlear electrical stimulation. J Acoust Soc Am 109:2035–2048PubMedCrossRefGoogle Scholar
  35. Rebscher SJ, Hetherington AM, Snyder RL, Leake PA, Bonham BH (2007) Design and fabrication of multichannel cochlear implants for animal research. J Neurosci Methods 166:1–12PubMedCrossRefGoogle Scholar
  36. Relkin EM, Doucet JR (1997) Is loudness simply proportional to the auditory nerve spike count? J Acoust Soc Am 101:2735–2740PubMedCrossRefGoogle Scholar
  37. Rose JE, Greenwood DD, Goldberg JM, Hind JE (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike counts to tone intensity and firing patterns of single elements. J Neurophysiol 26:294–320Google Scholar
  38. Ryan AF, Miller JM, Wang ZX, Woolf NK (1990) Spatial distribution of neural activity evoked by electrical stimulation of the cochlea. Hear Res 50:57–70PubMedCrossRefGoogle Scholar
  39. Schoenecker MC, Bonham BH (2008) Fast stimulus artifact recovery in a multichannel neural recording system. In: Proceedings of the IEEE Biomedical Circuits and Systems Conference, pp 253–256.Google Scholar
  40. Schreiner CE, Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386PubMedCrossRefGoogle Scholar
  41. Schreiner CE, Raggio MW (1996) Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. II. Repetition rate coding. J Neurophysiol 75:1283–1300PubMedGoogle Scholar
  42. Seshagiri CV, Delgutte B (2007) Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study. J Neurophysiol 98:2058–2073PubMedCrossRefGoogle Scholar
  43. Shamma SA, Fleshman JW, Wiser PR, Versnel H (1993) Organization of response areas in ferret primary auditory cortex. J Neurophysiol 69:367–383PubMedGoogle Scholar
  44. Shannon RV (1983a) Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear Res 11:157–189PubMedCrossRefGoogle Scholar
  45. Shannon RV (1983b) Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hear Res 12:1–16PubMedCrossRefGoogle Scholar
  46. Smith ZM, Delgutte B (2007) Using evoked potentials to match interaural electrode pairs with bilateral cochlear implants. J Assoc Res Otolaryngol 8:134–151PubMedCrossRefGoogle Scholar
  47. Snyder RL, Bonham BH (2007) Responses of Inferior Colliculus Neurons to SAM Tones and Electrical Pulse Trains. In: Thirtieth Annual Midwinter Research Meeting of the Association for Research in Otolaryngology (Santi PA, ed), p 219. Denver, Colorado, USAGoogle Scholar
  48. Snyder RL, Rebscher SJ, Cao KL, Leake PA, Kelly K (1990) Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hear Res 50:7–33PubMedCrossRefGoogle Scholar
  49. Snyder RL, Bierer JA, Middlebrooks JC (2004) Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. J Assoc Res Otolaryngol 5:305–322PubMedCrossRefGoogle Scholar
  50. Snyder RL, Middlebrooks JC, Bonham BH (2008) Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity. Hear Res 235:23–38PubMedCrossRefGoogle Scholar
  51. Stickney GS, Loizou PC, Mishra LN, Assmann PF, Shannon RV, Opie JM (2006) Effects of electrode design and configuration on channel interactions. Hear Res 211:33–45PubMedCrossRefGoogle Scholar
  52. van den Honert C, Stypulkowski PH (1987) Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hear Res 29:195–206PubMedCrossRefGoogle Scholar
  53. Wang X, Lu T, Snider RK, Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346PubMedCrossRefGoogle Scholar
  54. Young ED (2003) Cochlear nucleus. In: Shepherd GM (ed) The synaptic organization of the brain, 5th edn. Oxford University Press, New YorkGoogle Scholar
  55. Zwolan TA, Kileny PR, Ashbaugh C, Telian SA (1996) Patient performance with the Cochlear Corporation "20 + 2" implant: bipolar versus monopolar activation. Am J Otol 17:717–723PubMedGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2012

Authors and Affiliations

  • Matthew C. Schoenecker
    • 1
  • Ben H. Bonham
    • 2
  • Olga A. Stakhovskaya
    • 3
  • Russell L. Snyder
    • 2
    • 4
  • Patricia A. Leake
    • 2
  1. 1.Department of BioengineeringUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of Otolaryngology–HNSUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Department of Hearing & Speech SciencesUniversity of Maryland at College ParkCollege ParkUSA
  4. 4.Department of PsychologyUtah State UniversityLoganUSA

Personalised recommendations