Head Bobber: An Insertional Mutation Causes Inner Ear Defects, Hyperactive Circling, and Deafness

  • Giuseppina Somma
  • Heather M. Alger
  • Ryan M. McGuire
  • Jim D. Kretlow
  • Fernanda R. Ruiz
  • Svetlana A. Yatsenko
  • Pawel Stankiewicz
  • Wilbur Harrison
  • Etai Funk
  • Antonio Bergamaschi
  • John S. Oghalai
  • Antonios G. Mikos
  • Paul A. Overbeek
  • Fred A. Pereira
Article

Abstract

The head bobber transgenic mouse line, produced by pronuclear integration, exhibits repetitive head tilting, circling behavior, and severe hearing loss. Transmitted as an autosomal recessive trait, the homozygote has vestibular and cochlea inner ear defects. The space between the semicircular canals is enclosed within the otic capsule creating a vacuous chamber with remnants of the semicircular canals, associated cristae, and vestibular organs. A poorly developed stria vascularis and endolymphatic duct is likely the cause for Reissner’s membrane to collapse post-natally onto the organ of Corti in the cochlea. Molecular analyses identified a single integration of ~3 tandemly repeated copies of the transgene, a short duplicated segment of chromosome X and a 648 kb deletion of chromosome 7(F3). The three known genes (Gpr26, Cpxm2, and Chst15) in the deleted region are conserved in mammals and expressed in the wild-type inner ear during vestibular and cochlea development but are absent in homozygous mutant ears. We propose that genes critical for inner ear patterning and differentiation are lost at the head bobber locus and are candidate genes for human deafness and vestibular disorders.

Keywords

ear development cloning transgenic mouse stria vascularis semicircular canals 

Notes

Acknowledgments

We would like to thank all members of the Pereira lab and Dr. Venkatesh Govindarajan for critique of the manuscript. We would also like to thank Karen Steel for communicating unpublished data. This work was supported by Huffington Center on Aging funds and a pilot grant from the NOHR Foundation. We thank the Baylor College of Medicine Genome and RNA profiling core for microarray and data analysis.

Supplementary material

10162_2012_316_MOESM1_ESM.doc (64 kb)
ESM 1(DOC 64 kb)

References

  1. Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Wilcox ER (2001) Mutations of the protocadherin gene PCDH15 cause usher syndrome type 1F. Am J Hum Genet 69(1):25–34PubMedCrossRefGoogle Scholar
  2. Alagramam KN, Murcia CL, Kwon HY, Pawlowski KS, Wright CG, Woychik RP (2001a) The mouse Ames Waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat Genet 27(1):99–102PubMedCrossRefGoogle Scholar
  3. Alagramam KN, Yuan H, Kuehn MH, Murcia CL, Wayne S, Srisailpathy CR, Lowry RB, Knaus R, Van Laer L, Bernier FP, Schwartz S, Lee C, Morton CC, Mullins RF, Ramesh A, Van Camp G, Hageman GS, Woychik RP, Smith RJ, Hagemen GS (2001b) Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet 10(16):1709–1718PubMedCrossRefGoogle Scholar
  4. Anagnostopoulos AV (2002) A compendium of mouse knockouts with inner ear defects. Trends Genet 18(10):499PubMedCrossRefGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) “Controlling the false discovery rate: a practical and powerful approach to multiple testing”. J R Stat Soc Ser Methodol 57(1):289–300Google Scholar
  6. Beroukhim R et al (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A 104(50):20007–20012PubMedCrossRefGoogle Scholar
  7. Bok J, Chang W, Wu DK (2007) Patterning and morphogenesis of the vertebrate inner ear. Int J Dev Biol 51(6–7):521–533PubMedCrossRefGoogle Scholar
  8. Boulay JL, Ionescu MC, Sivasankaran B, Labuhn M, Dolder-Schlienger B, Taylor E, Morin P Jr, Hemmings BA, Lino MM, Jones G, Maier D, Merlo A (2009) The 10q25.3-26.1 G protein-coupled receptor gene GPR26 is epigenetically silenced in human gliomas. Int J Oncol 35(5):1123–1131PubMedCrossRefGoogle Scholar
  9. Bresnick JN, Skynner HA, Chapman KL, Jack AD, Zamiara E, Negulescu P, Beaumont K, Patel S, McAllister G (2003) Identification of signal transduction pathways used by orphan g protein-coupled receptors. Assay Drug Dev Technol 1(2):239–249PubMedCrossRefGoogle Scholar
  10. Colledge N, Lewis S, Mead G, Sellar R, Wardlaw J, Wilson J (2002) Magnetic resonance brain imaging in people with dizziness: a comparison with non-dizzy people. J Neurol Neurosurg Psychiatry 72(5):587–589PubMedCrossRefGoogle Scholar
  11. Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12(1):35–42PubMedCrossRefGoogle Scholar
  12. Feldkamp LA, Davis LC, Kress JW (1984) “Practical cone-beam algorithm,” J. Opf. Soc. Amer. A, vol. 1, no. 6, pp 612–619Google Scholar
  13. Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A, Gawenis LR, Kramer J, Duffy JJ, Doetschman T, Lorenz JN, Yamoah EN, Cardell EL, Shull GE (1999) Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274(38):26946–26955PubMedCrossRefGoogle Scholar
  14. Flaherty L (1981) Congenic strains. In: Foster HL, Small JD, Fox JG (eds) The mouse in biomedical research. Academic, New York, pp 215–222Google Scholar
  15. Francke U, Hsieh CL, Kelly D, Lai E, Popko B (1992) Induced reciprocal translocation in transgenic mice near sites of transgene integration. Mamm Genome 3(4):209–216PubMedCrossRefGoogle Scholar
  16. Gordon JW, Ruddle FH (1985) DNA-mediated genetic transformation of mouse embryos and bone marrow—a review. Gene 33(2):121–136PubMedCrossRefGoogle Scholar
  17. Hadrys T, Braun T, Rinkwitz-Brandt S, Arnold HH, Bober E (1998) Nkx5-1 controls semicircular canal formation in the mouse inner ear. Development 125(1):33–39PubMedGoogle Scholar
  18. Hardisty RE, Hughes DC, Steel KP (1997) The characterization of the head bobber mouse mutant. Br J Audiol 31(2):73–132 (83–4 Abstr)CrossRefGoogle Scholar
  19. Hasson T, Mooseker MS (1994) Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Cell Biol 127(2):425–440PubMedCrossRefGoogle Scholar
  20. Hibino H, Kurachi Y (2006) Molecular and physiological bases of the K+ circulation in the mammalian inner ear. Physiology (Bethesda) 21:336–345CrossRefGoogle Scholar
  21. Hughes D, Hardisty R, Steel KP (1998) Characterisation of the mouse mutant head bobber (hb). Hered Deaf News 15:35Google Scholar
  22. Ishiyama G, Tokita J, Lopez I, Tang Y, Ishiyama A (2007) Unbiased stereological estimation of the spiral ligament and stria vascularis volumes in aging and Meniere’s disease using archival human temporal bones. J Assoc Res Otolaryngol 8(1):8–17PubMedCrossRefGoogle Scholar
  23. Jaenisch R, Harbers K, Schnieke A, Lohler J, Chumakov I, Jahner D, Grotkopp D, Hoffmann E (1983) Germline integration of moloney murine leukemia virus at the Mov13 locus leads to recessive lethal mutation and early embryonic death. Cell 32(1):209–216PubMedCrossRefGoogle Scholar
  24. Kono M, Belyantseva IA, Skoura A, Frolenkov GI, Starost MF, Dreier JL, Lidington D, Bolz SS, Friedman TB, Hla T, Proia RL (2007) Deafness and stria vascularis defects in S1P2 receptor-null mice. J Biol Chem 282(14):10690–10696PubMedCrossRefGoogle Scholar
  25. Lee DK, Lynch KR, Nguyen T, Im DS, Cheng R, Saldivia VR, Liu Y, Liu IS, Heng HH, Seeman P, George SR, O’Dowd BF, Marchese A (2000) Cloning and characterization of additional members of the G protein-coupled receptor family. Biochim Biophys Acta 1490(3):311–323PubMedGoogle Scholar
  26. Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, Lewis T, Evans JF, George SR, O’Dowd BF (2001) Discovery and mapping of ten novel G protein-coupled receptor genes. Gene 275(1):83–91PubMedCrossRefGoogle Scholar
  27. MacLennan AJ, Benner SJ, Andringa A, Chaves AH, Rosing JL, Vesey R, Karpman AM, Cronier SA, Lee N, Erway LC, Miller ML (2006) The S1P2 sphingosine 1-phosphate receptor is essential for auditory and vestibular function. Hear Res 220(1–2):38–48PubMedCrossRefGoogle Scholar
  28. Mark WH, Signorelli K, Lacy E (1985) An insertional mutation in a transgenic mouse line results in developmental arrest at day 5 of gestation. Cold Spring Harb Symp Quant Biol 50:453–463PubMedCrossRefGoogle Scholar
  29. Martin P, Swanson GJ (1993) Descriptive and experimental analysis of the epithelial remodellings that control semicircular canal formation in the developing mouse inner ear. Dev Biol 159(2):549–558PubMedCrossRefGoogle Scholar
  30. Meisler MH (1992) Insertional mutation of ‘classical’ and novel genes in transgenic mice. Trends Genet 8(10):341–344PubMedCrossRefGoogle Scholar
  31. Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, Gardner A, Schuster G, Vien L, Harrison W, Elder FF, Penman-Splitt M, Overbeek P, Strachan T (1998) Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 20(2):149–156PubMedCrossRefGoogle Scholar
  32. Ohlemiller KK (2009) Mechanisms and genes in human strial presbycusis from animal models. Brain Res 1277:70–83PubMedCrossRefGoogle Scholar
  33. Ohtake S, Ito Y, Fukuta M, Habuchi O (2001) Human N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase cDNA is related to human B cell recombination activating gene-associated gene. J Biol Chem 276(47):43894–43900PubMedCrossRefGoogle Scholar
  34. Ohtake S, Kimata K, Habuchi O (2003) A unique nonreducing terminal modification of chondroitin sulfate by N-acetylgalactosamine 4-sulfate 6-o-sulfotransferase. J Biol Chem 278(40):38443–38452PubMedCrossRefGoogle Scholar
  35. Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Annu Rev Genet 20:465–499PubMedCrossRefGoogle Scholar
  36. Qiu Y, Pereira FA, DeMayo FJ, Lydon JP, Tsai SY, Tsai MJ (1997) Null mutation of mCOUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization. Genes Dev 11(15):1925–1937PubMedCrossRefGoogle Scholar
  37. Ratty AK, Matsuda Y, Elliott RW, Chapman VM, Gross KW (1992) Genetic mapping of two DNA markers, D16Ros1 and D16Ros2, flanking the mutation site in the chakragati mouse, a transgenic insertional mutant. Mamm Genome 3(1):5–10PubMedCrossRefGoogle Scholar
  38. Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C (2003) Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res 177(1–2):71–80PubMedCrossRefGoogle Scholar
  39. Shaffer LG, Kennedy GM, Spikes AS, Lupski JR (1997) Diagnosis of CMT1A duplications and HNPP deletions by interphase FISH: implications for testing in the cytogenetics laboratory. Am J Med Genet 69(3):325–331PubMedCrossRefGoogle Scholar
  40. Sher AE (1971) The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol Suppl 285:1–77PubMedGoogle Scholar
  41. Smith RJ, Bale JF Jr, White KR (2005) Sensorineural hearing loss in children. Lancet 365(9462):879–890PubMedCrossRefGoogle Scholar
  42. Somma G, Alger H, Stankiewicz P, Yatsenko SA, Overbeek, PA, Pereira FA (2005) Association for Research in Otolaryngology mid-winter meeting, New Orleans, Louisiana, Feb.19–24Google Scholar
  43. Spector GJ, Carr C (1979) The ultrastructural cytochemistry of peroxisomes in the guinea pig cochlea: a metabolic hypothesis for the stria vascularis. Laryngoscope 89(6 Pt 2 Suppl 16):1–38PubMedCrossRefGoogle Scholar
  44. Steel KP (1995) Inherited hearing defects in mice. Annu Rev Genet 29:675–701PubMedCrossRefGoogle Scholar
  45. Takeuchi S, Ando M, Kakigi A (2000) Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis. Biophys J 79(5):2572–2582PubMedCrossRefGoogle Scholar
  46. Wang W, Lufkin T (2005) Hmx homeobox gene function in inner ear and nervous system cell-type specification and development. Exp Cell Res 306(2):373–379PubMedCrossRefGoogle Scholar
  47. Wang W, Van De Water T, Lufkin T (1998) Inner ear and maternal reproductive defects in mice lacking the Hmx3 homeobox gene. Development 125(4):621–634PubMedGoogle Scholar
  48. Wang W, Chan EK, Baron S, Van de Water T, Lufkin T (2001) Hmx2 homeobox gene control of murine vestibular morphogenesis. Development 128(24):5017–5029PubMedGoogle Scholar
  49. Wang W, Grimmer JF, Van De Water TR, Lufkin T (2004) Hmx2 and Hmx3 homeobox genes direct development of the murine inner ear and hypothalamus and can be functionally replaced by Drosophila Hmx. Dev Cell 7(3):439–453PubMedCrossRefGoogle Scholar
  50. Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576(Pt 1):11–21PubMedCrossRefGoogle Scholar
  51. Xin X, Varlamov O, Day R, Dong W, Bridgett MM, Leiter EH, Fricker LD (1997) Cloning and sequence analysis of cDNA encoding rat carboxypeptidase D. DNA Cell Biol 16(7):897–909PubMedCrossRefGoogle Scholar
  52. Xin X, Day R, Dong W, Lei Y, Fricker LD (1998a) Cloning, sequence analysis, and distribution of rat metallocarboxypeptidase Z. DNA Cell Biol 17(4):311–319PubMedCrossRefGoogle Scholar
  53. Xin X, Day R, Dong W, Lei Y, Fricker LD (1998b) Identification of mouse CPX-2, a novel member of the metallocarboxypeptidase gene family: cDNA cloning, mRNA distribution, and protein expression and characterization. DNA Cell Biol 17(10):897–909PubMedCrossRefGoogle Scholar
  54. Zheng QY, Yu H, Washington JL 3rd, Kisley LB, Kikkawa YS, Pawlowski KS, Wright CG, Alagramam KN (2006) A new spontaneous mutation in the mouse protocadherin 15 gene. Hear Res 219(1–2):110–120PubMedCrossRefGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2012

Authors and Affiliations

  • Giuseppina Somma
    • 1
    • 8
  • Heather M. Alger
    • 1
  • Ryan M. McGuire
    • 6
  • Jim D. Kretlow
    • 6
  • Fernanda R. Ruiz
    • 1
    • 3
  • Svetlana A. Yatsenko
    • 4
  • Pawel Stankiewicz
    • 4
  • Wilbur Harrison
    • 3
  • Etai Funk
    • 2
  • Antonio Bergamaschi
    • 7
  • John S. Oghalai
    • 2
    • 6
  • Antonios G. Mikos
    • 6
  • Paul A. Overbeek
    • 3
    • 4
  • Fred A. Pereira
    • 1
    • 2
    • 3
    • 5
    • 6
  1. 1.Huffington Center on AgingBaylor College of MedicineHoustonUSA
  2. 2.Bobby R. Alford Department of Otolaryngology–Head and Neck SurgeryBaylor College of MedicineHoustonUSA
  3. 3.Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA
  4. 4.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  5. 5.Program in Cell and Molecular Biology, and Translational Biology and Molecular MedicineBaylor College of MedicineHoustonUSA
  6. 6.Department of BioengineeringRice UniversityHoustonUSA
  7. 7.Institute of Occupational MedicineCatholic University of the Sacred HeartRomeItaly
  8. 8.Department of Biopathology–Occupational MedicineTor Vergata UniversityRomeItaly

Personalised recommendations