Advertisement

A study of the role of vision in the foraging behaviour of the pyrrhocorid bug Antilochus conquebertii (Insecta; Hemiptera; Pyrrhocoridae)

  • Monalisa MishraEmail author
  • Ishita Chakraborty
  • Srirupa Basu
Original Article

Abstract

Our study aims to describe (1) external morphology of the compound eye of Antilochus conquebertii, (2) postembryonic changes involving the eye’s shape and size and (3) behaviour of the animal with respect to the organization of the compound eye. With each moult of the insect, the structural units of the compound eye increase in size as well as the number, resulting in an overall increase in eye size. The resolution of the adult eye is better than the young one. The adult possesses UV and polarization sensitivity in its eye. Parallel to the changes of the eye the behaviour of the adult animal changes, rendering it increasingly nocturnal and less active in under illuminated conditions. The current study describes the eye and its functional relationship with the behaviour of the animal at the nymphal and adult developmental stage.

Graphical abstract

Keywords

Compound eye Colour sensitivity Postembryonic change Behaviour Ultraviolet sensitivity 

Notes

Acknowledgements

We wish to thank the technician of the scanning electron microscopy facility of National Institute of Technology, Rourkela, for handling the electron microscope. Shaunak, Sayantan and Tryanti are acknowledged for their help in catching the insects and helping Ishita while doing the behavioural analysis. Dr. Harekrushna Sahoo is thankfully acknowledged for the statistical analysis and Dr. Binod Bihari Sahu is thankfully acknowledged for identifying the scientific names of the flowers used in this study. Anonymous reviewers are thankfully acknowledged for their valuable comments which help to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest for this manuscript.

References

  1. Aldrich JR, Lusby WR, Kochansky JP, Abrams CB (1984) Volatile compounds from the predatory insect Podisus maculiventris (Hemiptera: Pentatomidae). J Chem Ecol 10:561–568CrossRefGoogle Scholar
  2. Alfsnes K, Leinaas HP, Hessen DO (2017) Genome size in arthropods; different roles of phylogeny, habitat and life history in insects and crustaceans. Evol Ecol 7:5939–5947CrossRefGoogle Scholar
  3. Anderson H (1978) Postembryonic development of the visual system of the locust, Schistocerca gregaria. Development 45:55–83Google Scholar
  4. Arnett RH, Thomas MC, Skelley PE, Frank JH (2002) American beetles, volume II: Polyphaga: Scarabaeoidea through Curculionoidea, vol 2. CRC Press, Boca RatonCrossRefGoogle Scholar
  5. Arnqvist G (1989) Multiple mating in a water strider: mutual benefits or intersexual conflict? Anim Behav 38:749–756CrossRefGoogle Scholar
  6. Arnqvist G, Rowe L (1995) Sexual conflict and arms races between the sexes: a morphological adaptation for control of mating in a female insect. Proc R Soc Lond B 261:123–127CrossRefGoogle Scholar
  7. Baker GT, Lawrence A, Kuklinski R, Goddard J (2015) Post-embryonic development of the compound eye of bed bugs, Cimex lectularius L. (Hemiptera: Cimicidae). Proc Entomol Soc Wash 117:1–6CrossRefGoogle Scholar
  8. Bauer T, Desender K, Morwinsky T, Betz O (1998) Eye morphology reflects habitat demands in three closely related ground beetle species (Coleoptera: Carabidae). J Zool 245:467–472CrossRefGoogle Scholar
  9. Bernhard C, Ottoson D (1960) Comparative studies on dark adaptation in the compound eyes of nocturnal and diurnal Lepidoptera. J Gen Physiol 44:195–203CrossRefGoogle Scholar
  10. Bernhard C, Gemne G, Seitz G (1972) Optical properties of the compound eye. In: Fuortes MGF (ed) Physiology of photoreceptor organs. Springer, Berlin, pp 357–379Google Scholar
  11. Bernstein S, Finn C (1971) Ant compound eye: size-related ommatidium differences within a single wood ant nest. Cell Mol Life Sci 27:708–710CrossRefGoogle Scholar
  12. Bonduriansky R (2001) The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol Rev 76:305–339CrossRefGoogle Scholar
  13. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Ann Rev Entomol 46:471–510CrossRefGoogle Scholar
  14. Craig CL, Ebert K (1994) Colour and pattern in predator–prey interactions: the bright body colours and patterns of a tropical orb-spinning spider attract flower-seeking prey. Funct Ecol 8:616–620CrossRefGoogle Scholar
  15. Demos SG, Alfano RR (1996) Ice detection on metal surfaces using the degree of polarisation of diffusely reflected light [aircraft wings]. Electr Lett 32(24):2254–2255CrossRefGoogle Scholar
  16. Döring TF, Spaethe J (2009) Measurements of eye size and acuity in aphids (Hemiptera: Aphididae). Entomol Gen 32:77–84CrossRefGoogle Scholar
  17. Eguchi E (1982) Retinular fine structure in compound eyes of diurnal and nocturnal sphingid moths. Cell Tissue Res 2231:29–42Google Scholar
  18. Evangelin G, Horne B, Jino M (2015) Feeding behaviour of Antilochus coquebertii (Hemiptera: Pyrrhocoridae) and its systematic positioning. J Entomol Zool Stud 3:199–203Google Scholar
  19. Frolov R, Immonen EV, Vähäsöyrinki M, Weckström M (2012) Postembryonic developmental changes in photoreceptors of the stick insect Carausius morosus enhance the shift to an adult nocturnal life-style. J Neurosc 32:16821–16831CrossRefGoogle Scholar
  20. Fuseini B, Kumar R (1975) Biology and immature stages of cotton stainers (Heteroptera: Pyrrhocoridae) found in Ghana. Biol J Linn Soc 7:83–111CrossRefGoogle Scholar
  21. Ghosh S, Mishra M (2018) Fine nanostructural variation in the wing pattern of a moth Chiasmia eleonora Cramer (1780). J Biosci 43:673–684CrossRefGoogle Scholar
  22. Harvey PH, Bull JJ, Pemberton M, Paxton RJ (1982) The evolution of aposematic coloration in distasteful prey: a family model. Am Nat 119:710–719CrossRefGoogle Scholar
  23. Horridge GA (1977) The compound eye of insects. Sci Am 237:108–121CrossRefGoogle Scholar
  24. Horridge GA (1978) The separation of visual axes in apposition compound eyes. Phil Trans R Soc Lond B 285:1–59CrossRefGoogle Scholar
  25. Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7:317–325CrossRefGoogle Scholar
  26. Hu G, Lim KS, Reynolds DR, Reynolds AM, Chapman JW (2016) Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants. Front Behav Neur 10:32Google Scholar
  27. Huang J, Wang X, Wang ZL (2007) Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes. Nanotechnology 19:025602CrossRefGoogle Scholar
  28. Jander U, Jander R (2002) Allometry and resolution of bee eyes (Apoidea). Arthropod Struct Dev 30:179–193CrossRefGoogle Scholar
  29. Jang Y, An HG, Kim H, Kim KH (2013) Spectral preferences of Lycorma delicatula (Hemiptera: Fulgoridae). Entomol Res 43:115–122CrossRefGoogle Scholar
  30. Jones CE (1978) Pollinator constancy as a pre-pollination isolating mechanism between sympatric species of Cercidium. Evolution 32:189–198CrossRefGoogle Scholar
  31. Keskinen E, Meyer-Rochow VB (2004) Post-embryonic photoreceptor development and dark/light adaptation in the spittle bug Philaenus spumarius (L.) (Homoptera, Cercopidae). Arthropod Struct Dev 33:405–417CrossRefGoogle Scholar
  32. Kohno K, Buithi N (2005) Comparison of the life history strategies of three Dysdercus true bugs (Heteroptera: Pyrrhocoridae), with special reference to their seasonal host plant use. Entomol Sci 8:313–322CrossRefGoogle Scholar
  33. Kohno K, Thi NB, Fujiwara M (2004) Predation of dysdercus cingulatus (Heteroptera: Pyrrhocoridae) by the specialist predator Antilochus coqueberti (Heteroptera: Pyrrhocoridae). Appl Entomol Zool 39(4):661–667CrossRefGoogle Scholar
  34. Kolb G (1985) Ultrastructure and adaptation in the retina of Aglais urticae (Lepidoptera). Zoomorphology 105:90–98CrossRefGoogle Scholar
  35. Koski MH, Ashman TL (2014) Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct Ecol 28:868–877CrossRefGoogle Scholar
  36. Kral K (2012) The functional significance of mantis peering behaviour. Eur J Entomol 109:295CrossRefGoogle Scholar
  37. Kral K, Poteser M (2009) Relationship between body size and spatial vision in the praying mantis-an ontogenetic study. Aust Orth J 18:153–158Google Scholar
  38. Land MF (1997) Visual acuity in insects. Ann Rev Entomol 42:147–177CrossRefGoogle Scholar
  39. Land MF, Nilsson DE (2012) Animal eyes. Oxford University Press, OxfordCrossRefGoogle Scholar
  40. Lehmann T, Heß M, Melzer RR (2018) Sense organs in Pycnogonida: a review. Acta Zool 99:211–230CrossRefGoogle Scholar
  41. Mazokhin-Porshnyakov GA (1969) Insect vision. Plenum Press, New YorkGoogle Scholar
  42. Meyer-Rochow VB, Keskinen E (2003) Post-embryonic photoreceptor development and dark/light adaptation in the stick insect Carausius morosus (Phasmida, Phasmatidae). Appl Entomol Zool 38:281–291CrossRefGoogle Scholar
  43. Meyer-Rochow VB, Mishra M (2007) Structure and putative function of dark-and light-adapted as well as UV-exposed eyes of the food store pest Psyllipsocus ramburi Sélys-longchamps (Insecta: Psocoptera: Psyllipsocidae). J Insect Physiol 53:157–169CrossRefGoogle Scholar
  44. Mishra M (2013) Eye ultrastructure of three ecologically diverse elaterid beetle species (Coleoptera: Elateridae). Entomol Gen 34:235–247CrossRefGoogle Scholar
  45. Mishra M, Meyer-Rochow VB (2006a) Fine structure of the compound eye of the fungus beetle Neotriplax lewisi (Coleoptera, Cucujiformia, Erotylidae). Inver Biol 125:265–278CrossRefGoogle Scholar
  46. Mishra M, Meyer-Rochow VB (2006b) Eye ultrastructure in the pollen-feeding beetle, Xanthochroa luteipennis (Coleoptera: Cucujiformia: Oedemeridae). Microscopy 55:289–300CrossRefGoogle Scholar
  47. Moser JC, Reeve JD, Bento JMS, Della Lucia TM, Cameron RS, Heck NM (2004) Eye size and behaviour of day-and night-flying leafcutting ant alates. J Zool 264:69–75CrossRefGoogle Scholar
  48. Muir LE, Kay BH, Thorne MJ (1992) Aedes aegypti (Diptera: Culicidae) vision: response to stimuli from the optical environment. J Med Entomol 29:445–450CrossRefGoogle Scholar
  49. Narendra A, Ribi WA (2017) Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants. J Exp Biol 220:4383–4390CrossRefGoogle Scholar
  50. Narendra A, Alkaladi A, Raderschall CA, Robson SK, Ribi WA (2013a) Compound eye adaptations for diurnal and nocturnal lifestyle in the intertidal ant, Polyrhachis sokolova. PLoS One 8:e76015CrossRefGoogle Scholar
  51. Narendra A, Alkaladi A, Raderschall CA, Robson SK, Ribi WA (2013b) Correction: compound eye adaptations for diurnal and nocturnal lifestyle in the intertidal ant, Polyrhachis sokolova. PLoS One 8(10):1371CrossRefGoogle Scholar
  52. Nilsson DE (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 30–73Google Scholar
  53. Nilsson DE, Ro AI (1994) Did neural pooling for night vision lead to the evolution of neural superposition eyes? J Comp Physiol A 175:289–302CrossRefGoogle Scholar
  54. Noriega JA, Huay Lee JS (2010) Predation on Onthophagus rutilans Sharp (Coleoptera: Scarabaeidae) by Dindymus albicornis (Fabricius) (Hemiptera: Pyrrhocoridae). Bol Sea 46:609–610Google Scholar
  55. O’Carroll D (1993) Feature-detecting neurons in dragonflies. Nature 362(6420):541–543CrossRefGoogle Scholar
  56. Paul R, Steiner A, Gemperlein R (1986) Spectral sensitivity of Calliphora erythrocephala and other insect species studied with Fourier Interferometric Stimulation (FIS). J Comp Physiol 158:669–680CrossRefGoogle Scholar
  57. Poulton EB (1887) An enquiry into the cause and extent of a special colour-relation between certain exposed lepidopterous pupae and the surfaces which immediately surround them. Philos Trans R Soc B 178:311–441Google Scholar
  58. Rothschild M (1961) Defensive odours and mullerian mimicry among insects. Trans R Entomol Soc Lond 113:101–123CrossRefGoogle Scholar
  59. Schaefer CW (1999) Review of Raxa (Hemiptera: Pyrrhocoridae). Ann Entomol Soc Am 92:14–19CrossRefGoogle Scholar
  60. Schwermann AH, dos Santos Rolo T, Caterino MS, Bechly G, Schmied H, Baumbach T et al (2016) Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference. eLife 5:e12129CrossRefGoogle Scholar
  61. Shimoda M, Honda KI (2013) Insect reactions to light and its applications to pest management. Appl Entomolo Zool 48:413–421CrossRefGoogle Scholar
  62. Snyder AW, Stavenga DG, Laughlin SB (1977) Spatial information capacity of compound eyes. J Comp Physiol 116:183–207CrossRefGoogle Scholar
  63. Staddon JE (2016) Adaptive behavior and learning. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Stavenga D, Stowe S, Siebke K, Zeil J, Arikawa K (2004) Butterfly wing colours: scale beads make white pierid wings brighter. Proc R Soc Biol Sci 271:1577–1584CrossRefGoogle Scholar
  65. Stavenga D, Foletti S, Palasantzas G, Arikawa K (2006) Light on the moth-eye corneal nipple array of butterflies. Proc R Soc Biol Sci 273:661–667CrossRefGoogle Scholar
  66. Stehlík JL, Jindra Z (2006) New species of Largidae and Pyrrhocoridae (Heteroptera) from the Oriental region. Acta Entomol Mus Nat Prag 46:31–41Google Scholar
  67. Tyrer N, Bacon J, Davies C (1979) Sensory projections from the wind-sensitive head hairs of the locust Schistocerca gregaria. Cell Tissue Res 203:79–92CrossRefGoogle Scholar
  68. Warrant EJ (2001) The design of compound eyes and the illumination of natural habitats. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin, pp 187–213Google Scholar
  69. Warrant E, Dacke M (2016) Visual navigation in nocturnal insects. Physiology 31:182–192CrossRefGoogle Scholar
  70. Yilmaz A, Aksoy V, Camlitepe Y, Giurfa M (2014) Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front Behav Neur 8:205Google Scholar
  71. Young DK (1973) A revision of the family Pyrochroidae (Coleoptera: Heteromera) for North America based on the larvae, pupae and adults. In: American Entomological Institute. Contributions, American Entomological InstituteGoogle Scholar
  72. Zack S, Bacon J (1981) Interommatidial sensilla of the praying mantis: their central neural projections and role in head-cleaning behavior. Dev Neurobiol 12:55–65CrossRefGoogle Scholar
  73. Zhang H (2010) Latin square design. In: Salkind N (ed) Encyclopedia of research design. SAGE Publications Inc., Thousand Oaks, pp 99–704Google Scholar
  74. Zhang W, Zhang D, Fan T, Gu J, Ding J, Wang H et al (2008) Novel photoanode structure templated from butterfly wing scales. Chem Mater 21:33–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Monalisa Mishra
    • 1
    Email author
  • Ishita Chakraborty
    • 2
  • Srirupa Basu
    • 1
  1. 1.Neural Developmental Biology Lab, Department of Life ScienceNational Institute of Technology, RourkelaRourkelaIndia
  2. 2.Heritage Institute of TechnologyKolkataIndia

Personalised recommendations