Invertebrate Neuroscience

, 17:8 | Cite as

Cephalopod biology and care, a COST FA1301 (CephsInAction) training school: anaesthesia and scientific procedures

  • Vanessa M. Lopes
  • Eduardo Sampaio
  • Katina Roumbedakis
  • Nobuaki K. Tanaka
  • Lucía Carulla
  • Guillermo Gambús
  • Theodosia Woo
  • Catarina P. P. Martins
  • Virginie Penicaud
  • Colette Gibbings
  • Jessica Eberle
  • Perla Tedesco
  • Isabel Fernández
  • Tania Rodríguez-González
  • Pamela Imperadore
  • Giovanna Ponte
  • Graziano Fiorito
News and Views

Abstract

Cephalopods are the sole invertebrates included in the list of regulated species following the Directive 2010/63/EU. According to the Directive, achieving competence through adequate training is a requisite for people having a role in the different functions (article 23) as such carrying out procedures on animals, designing procedures and projects, taking care of animals, killing animals. Cephalopod Biology and Care Training Program is specifically designed to comply with the requirements of the “working document on the development of a common education and training framework to fulfil the requirements under the Directive 2010/63/EU”. The training event occurred at the ICM-CSIC in Barcelona (Spain) where people coming from Europe, America and Asia were instructed on how to cope with regulations for the use of cephalopod molluscs for scientific purposes. The training encompasses discussion on the guidelines for the use and care of animals and their welfare with particular reference to procedures that may be of interest for neuroscience. Intensive discussion has been carried out during the training sessions with focus on behavioural studies and paradigms, welfare assessment, levels of severity of scientific procedures, animal care, handling, transport, individual identification and marking, substance administration, anaesthesia, analgesia and humane killing.

Keywords

Directive 2010/63/EU Cephalopods COST Action FA1301 Training and education 

References

  1. Agin V, Chichery R, Dickel L, Chichery MP (2006) The “prawn-in-the-tube” procedure in the cuttlefish: habituation or passive avoidance learning? Learn Mem (Cold Spring Harbor) 13:97–101CrossRefGoogle Scholar
  2. Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, Brenner S, Ragsdale CW, Rokhsar DS (2015) The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524:220–224CrossRefPubMedPubMedCentralGoogle Scholar
  3. Almansa E, Domingues P, Sykes A, Tejera N, Lorenzo A, Andrade JP (2006) The effects of feeding with shrimp or fish fry on growth and mantle lipid composition of juvenile and adult cuttlefish (Sepia officinalis). Aquaculture 256:403–413CrossRefGoogle Scholar
  4. Borrelli L, Fiorito G (2008) Behavioral analysis of learning and memory in cephalopods. In: Byrne JJ (ed) Learning and memory: a comprehensive reference. Academic Press, Oxford, pp 605–627CrossRefGoogle Scholar
  5. Boyle PR (1986) Neural control of cephalopod behavior. In: Willows AOD (ed) The Mollusca. Neurobiology and behaviour part 2, vol 9. Academic Press, New York, pp 1–99Google Scholar
  6. Brown ER, Piscopo S (2013) Synaptic plasticity in cephalopods; more than just learning and memory? Invertebr Neurosci 13:35–44CrossRefGoogle Scholar
  7. Collins AJ, Nyholm SV (2010) Obtaining hemocytes from the hawaiian bobtail squid Euprymna scolopes and observing their adherence to symbiotic and non-symbiotic bacteria. JoVEGoogle Scholar
  8. Di Cristina G, Andrews P, Ponte G, Galligioni V, Fiorito G (2015) The impact of Directive 2010/63/EU on cephalopod research. Invertebr Neurosci 15:1–7CrossRefGoogle Scholar
  9. Domingues P, Sykes A, Sommerfield A, Andrade JP (2003) Effects of feeding live or frozen prey on growth, survival and the life cycle of the cuttlefish, Sepia officinalis (Linnaeus, 1758). Aquacult Int 11:397–410CrossRefGoogle Scholar
  10. Domingues P, Sykes A, Sommerfield A, Alamansa E, Lorenzo A, Andrade JP (2004) Growth and survival of cuttlefish (Sepia officinalis) of different ages fed crustaceans and fish. Effects of frozen and live prey. Aquaculture 229:239–254CrossRefGoogle Scholar
  11. Fiorito G, Chichery R (1995) Lesions of the vertical lobe impair visual discrimination learning by observation in Octopus vulgaris. Neurosci Lett 192:117–120CrossRefPubMedGoogle Scholar
  12. Fiorito G, von Planta C, Scotto P (1990) Problem Solving Ability of Octopus vulgaris Lamarck (Mollusca, Cephalopoda). Behav Neural Biol 230:217–230CrossRefGoogle Scholar
  13. Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, Cole A, D’Angelo L, De Girolamo P, Dennison N, Dickel L, Di Cosmo A, Di Cristo C, Gestal C, Fonseca R, Grasso F, Kristiansen T, Kuba M, Maffucci F, Manciocco A, Mark FC, Melillo D, Osorio D, Palumbo A, Perkins K, Ponte G, Raspa M, Shashar N, Smith J, Smith D, Sykes A, Villanueva R, Tublitz N, Zullo L, Andrews P (2014) Cephalopods in neuroscience: regulations, research and the 3Rs. Invertebr Neurosci 14:13–36CrossRefGoogle Scholar
  14. Fiorito G, Affuso A, Basil J, Cole A, Girolamo P, D’Angelo L, Dickel L, Gestal C, Grasso F, Kuba M, Mark F, Melillo D, Osorio D, Perkins K, Ponte G, Shashar N, Smith D, Smith J, Andrews PLR (2015) Guidelines for the care and welfare of cephalopods in research—a consensus based on an initiative by CephRes, FELASA and the Boyd group. Lab Anim 49:1–90CrossRefPubMedGoogle Scholar
  15. Gilbert DL, Adelman WJ, Arnold JM (1990) Squid as experimental animals. Springer, New YorkCrossRefGoogle Scholar
  16. Gleadall IG (2013) The effects of prospective anaesthetic substances on cephalopods: summary of original data and a brief review of studies over the last two decades. J Exp Mar Biol Ecol 447:23–30CrossRefGoogle Scholar
  17. Grimpe G (1928) Pflege, Behandlung und Zucht der Cephalopoden für zoologische und physiologische Zwecke. Abderhalden Handbuch der biologischen Arbeitsmethoden. Abt. IX. Teil 5:331–402Google Scholar
  18. Halm MP, Chichery MP, Chichery R (2002) The role of cholinergic networks of the anterior basal and inferior frontal lobes in the predatory behaviour of Sepia officinalis. Comp Biochem Physiol A Mol Integr Physiol 132:267–274CrossRefPubMedGoogle Scholar
  19. Hawkins P, Dennison N, Goodman G, Hetherington S, Llywelyn-Jones S, Ryder K, Smith AJ (2011) Guidance on the severity classification of scientific procedures involving fish: report of a working group appointed by the Norwegian consensus-platform for the replacement, reduction and refinement of animal experiments (Norecopa). Lab Anim 45:219–224CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hochner B (2012) An embodied view of octopus neurobiology. Curr Biol 22(20):R887–R892CrossRefPubMedGoogle Scholar
  21. Hochner B, Shomrat T (2013) The neurophysiological basis of learning and memory in advanced invertebrates the octopus and the cuttlefish. Invertebr Learn Mem 22:303–317CrossRefGoogle Scholar
  22. Huffard CL (2013) Cephalopod neurobiology: an introduction for biologists working in other model systems. Invertebr Neurosci 13:11–18CrossRefGoogle Scholar
  23. Mather JA, Anderson RC, Wood JB (2010) Octopus: the ocean’s intelligent invertebrate. Timber Press, PortlandCrossRefGoogle Scholar
  24. Messenger JB, Nixon M, Ryan KP (1985) Magnesium chloride as an anesthetic for cephalopods. Comp Biochem Physiol C Comp Pharmacol 82:203–205CrossRefGoogle Scholar
  25. Moltschaniwskyj NA, Hall K, Lipinski MR, Marian JEAR, Nishiguchi M, Sakai M, Shulman DJ, Sinclair B, Sinn DL, Staudinger M, Van Gelderen R, Villanueva R, Warnke K (2007) Ethical and welfare considerations when using cephalopods as experimental animals. Rev Fish Biol Fish 17:455–476CrossRefGoogle Scholar
  26. Petrella V (2003) Identificazione e marcatura di Octopus vulgaris (Mollusca, Cephalopoda): stato delle conoscenze e studio di fattibilità. Master Degree. Università degli Studi di Napoli ‘Federico II’. Facoltà di Scienze Matematiche, Fisiche e NaturaliGoogle Scholar
  27. Polese G, Winlow W, Di Cosmo A (2014) Dose-dependent effects of the clinical anesthetic isoflurane on Octopus vulgaris: a contribution to cephalopod welfare. J Aquat Anim Health 26:285–294CrossRefPubMedGoogle Scholar
  28. Purdy JE, Peters A, Riedlinger E, Suarez R (2006) Prawn-in-a-tube procedure: habituation or associative learning in cuttlefish? J Gen Psychol 133:131–152CrossRefPubMedGoogle Scholar
  29. Richardson WJ, Greene CR Jr, Cl Malme, Thomson DH (1995) Marine mammals and noise. Academic Press, San DiegoGoogle Scholar
  30. Romagny S, Darmaillacq AS, Guibé M, Bellanger C, Dickel L (2012) Feel, smell and see in an egg: emergence of perception and learning in an immature invertebrate, the cuttlefish embryo. J Exp Biol 215:4125–4130CrossRefPubMedGoogle Scholar
  31. Rosas C, Caamal C, Cazares R, (2010) Incubation process for octopus and incubator. World Intellectual Property Organization (WIPO), Mexico, pp. 1–6, PCT/MX2009/000100Google Scholar
  32. Ross LG, Ross B (2008) Anaesthetic and sedative techniques for aquatic animals. Black-Well Publishing, OxfordCrossRefGoogle Scholar
  33. Seol DW, Lee J, Im SY, Park IS (2007) Clove oil as an anaesthetic for common octopus (Octopus minor, Sasaki). Aquac Res 38:45–49CrossRefGoogle Scholar
  34. Shigeno S, Ragsdale CW (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 523:1297–1317CrossRefPubMedGoogle Scholar
  35. Shigeno S, Tsuchiya K, Segawa S (2001) Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J Comp Neurol 437:449–475CrossRefPubMedGoogle Scholar
  36. Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18:337–342CrossRefPubMedGoogle Scholar
  37. Solé M, Lenoir M, Durfort M, López-Bejar M, Lombarte A, Van der Schaar M, André M (2013) Does exposure to noise from human activities compromise sensory information from cephalopod statocysts? Deep-Sea Res II 95:160–181CrossRefGoogle Scholar
  38. Sykes A, Domingues PM, Andrade JP (2006) Effects of using live grass shrimp (Palaemonetes varians) as the only source of food for the culture of cuttlefish, Sepia officinalis (Linnaeus, 1758). Aquacult Int 14:551–568CrossRefGoogle Scholar
  39. Sykes A, Gonçalves RA, Andrade JP (2013) Early weaning of cuttlefish (Sepia officinalis, L.) with frozen grass shrimp (Palaemonetes varians) from the first day after hatching. Aquacult Res 44:1815–1823CrossRefGoogle Scholar
  40. Sykes A, Alves A, Capaza JC, Madeira C, Couto AT, Gonçalves RA, Frias PA, Leal I, Andrade JP (2017) Refining tools for studying cuttlefish (Sepia officinalis) reproduction in captivity: In Vivo sexual determination, tagging and DNA collection. Aquaculture, in press. doi.org/10.1016/j.aquaculture.2017.05.021
  41. Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Oxford University Press, OxfordGoogle Scholar
  42. Young JZ (1985) Cephalopods and neuroscience. Biol Bull 168:153–158CrossRefGoogle Scholar
  43. Zarrella I, Ponte G, Baldascino E, Fiorito G (2015) Learning and memory in Octopus vulgaris: a case of biological plasticity. Curr Opin Neurobiol 35:74–79CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vanessa M. Lopes
    • 1
    • 2
  • Eduardo Sampaio
    • 1
  • Katina Roumbedakis
    • 3
  • Nobuaki K. Tanaka
    • 4
  • Lucía Carulla
    • 5
  • Guillermo Gambús
    • 6
  • Theodosia Woo
    • 7
  • Catarina P. P. Martins
    • 6
  • Virginie Penicaud
    • 8
  • Colette Gibbings
    • 9
  • Jessica Eberle
    • 7
  • Perla Tedesco
    • 10
    • 11
  • Isabel Fernández
    • 12
  • Tania Rodríguez-González
    • 13
  • Pamela Imperadore
    • 14
  • Giovanna Ponte
    • 10
    • 14
  • Graziano Fiorito
    • 10
    • 14
  1. 1.MARE – Marine Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências daUniversidade de LisboaLisbonPortugal
  2. 2.IPMA – Instituto Português do Mar e da AtmosferaLisbonPortugal
  3. 3.AQUOS – Sanidade de Organismos AquáticosUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  4. 4.Creative Research InstitutionHokkaido UniversitySapporoJapan
  5. 5.L’Aquàrium de Barcelona, Aspro Ocio S.ABarcelonaSpain
  6. 6.ICM-CSIC – Instituto de Ciencias del MarBarcelonaSpain
  7. 7.Max Planck Institute for Brain ResearchFrankfurt am MainGermany
  8. 8.LIENSs - Littoral Environnement et SociétésUniversité de La RochelleLa RochelleFrance
  9. 9.ZSL London Zoo, Regent’s ParkLondonUK
  10. 10.Sezione Biologia ed Evoluzione degli Organismi MariniStazione Zoologica Anton DohrnNaplesItaly
  11. 11.Dipartimento di Scienze e Tecnologie Biologiche ed AmbientaliUniversità del Salento, CoNISMaLecceItaly
  12. 12.Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUAUniversidad de Las Palmas de Gran CanariaTeldeSpain
  13. 13.IMIDA - Instituto Murciano de Investigación y Desarrollo Agrario y AlimentarioEstación de Acuicultura MarinaSan Pedro del Pinatar, MurciaSpain
  14. 14.Association for Cephalopod Research - CephResNaplesItaly

Personalised recommendations