Invertebrate Neuroscience

, Volume 13, Issue 1, pp 1–9 | Cite as

Fostering cephalopod biology research: past and current trends and topics

  • Giovanna Ponte
  • Ariane Dröscher
  • Graziano Fiorito


  1. Albertin CB, Bonnaud L, Brown CT, Crookes-Goodson WJ, da Fonseca RR, Di Cristo C, Dilkes BP, Edsinger-Gonzales E, Freeman RM Jr, Hanlon RT, Koenig KM, Lindgren AR, Martindale MQ, Minx P, Moroz LL, Nodl MT, Nyholm SV, Ogura A, Pungor JR, Rosenthal JJ, Schwarz EM, Shigeno S, Strugnell JM, Wollesen T, Zhang G, Ragsdale CW (2012) Cephalopod genomics: a plan of strategies and organization. Stand Genomic Sci 7:175–188PubMedCrossRefGoogle Scholar
  2. Andrews PLR (2011a) Laboratory invertebrates: only spineless, or spineless and painless? Introduction. ILAR J 52:121–125PubMedCrossRefGoogle Scholar
  3. Andrews PLR (2011b) Practical implications for cephalopod researchers in the implementation of directive 2010/63/EU. J Shellfish Res 30:995Google Scholar
  4. Andrews PLR, Darmaillacq AS, Dennison N, Gleadall IG, Hawkins P, Messenger JB, Osorio D, Smith VJ, Smith JA (2013) The identification and management of pain, suffering and distress in cephalopods, including anesthesia, analgesia and humane killing. J Exp Mar Biol Ecol. doi:10.1016/j.jembe.2013.02.010 Google Scholar
  5. Bardou I, Maubert E, Leprince J, Chichery R, Cocquerelle C, Launay S, Vivien D, Vaudry H, Agin V (2009) Distribution of oxytocin-like and vasopressin-like immunoreactivities within the central nervous system of the cuttlefish, Sepia officinalis. Cell Tissue Res 336:249–266PubMedCrossRefGoogle Scholar
  6. Borrelli L, Fiorito G (2008) Behavioral Analysis of Learning and Memory in Cephalopods. In: Byrne JJ (ed) Learning and memory: a comprehensive reference. Academic Press, Oxford, pp 605–627CrossRefGoogle Scholar
  7. Borrelli L, Gherardi F, Fiorito G (2006) A catalogue of body patterning in cephalopoda. Stazione Zoologica A. Dohrn; Firenze University Press, NapoliGoogle Scholar
  8. Boyer C, Maubert E, Charnay Y, Chichery R (2007) Distribution of neurokinin A-like and serotonin immunoreactivities within the vertical lobe complex in Sepia officinalis. Brain Res 1133:53–66PubMedCrossRefGoogle Scholar
  9. Clarac F, Pearlstein E (2007) Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century. Brain Res Rev 54:113–161PubMedCrossRefGoogle Scholar
  10. Cobb JLS, Pentreath VW (1978) Comparison of morphology of synapses in invertebrate and vertebrate nervous systems—analysis of significance of anatomical differences and interpretation of morphological specializations. Progr Neurobiol 10:231–252CrossRefGoogle Scholar
  11. Di Cosmo A, Paolucci M, Di Cristo C (2004) N-methyl-D-aspartate receptor-like immunoreactivity in the brain of Sepia and Octopus. J Comp Neurol 477:202–219PubMedCrossRefGoogle Scholar
  12. Dilly PN, Gray EG, Young JZ (1963) Electron microscopy of optic nerves and optic lobes of octopus and eledone. In: Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) 158:446–456Google Scholar
  13. Edelman DB (2011) How octopuses see the world and other roads less traveled: necessity versus sufficiency and evolutionary convergence in the study of animal consciousness. J Shellfish Res 30:1001Google Scholar
  14. Edelman DB, Seth AK (2009) Animal consciousness: a synthetic approach. Trends Neurosci 32:476–484PubMedCrossRefGoogle Scholar
  15. EuroCeph 2011, CephRes (2011) Abstracts of Contributions Presented at Euroceph 2011 “Cephalopod Biology Research in the 21St Century A European Perspective” Vico Equense, Napoli, Italy April 7–10, 2011. J Shellfish Res 30:989–1023Google Scholar
  16. European Parliament, Council of the European Union (2010) Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Concil of Europe, StrasbourgGoogle Scholar
  17. Finn JK, Tregenza T, Norman MD (2009) Defensive tool use in a coconut-carrying octopus. Curr Biol 19:R1069–R1070PubMedCrossRefGoogle Scholar
  18. Fiorito G (2011) Abstracts of Contributions Presented at Euroceph 2011 “Cephalopod Biology Research in the 21St Century A European Perspective” Vico Equense, Napoli, Italy April 7–10, 2011. J Shellfish Res 30:995Google Scholar
  19. Gray EG (1969) Electron microscopy of the glio-vascular organization of the brain of octopus. Philos Trans R Soc Lond Ser B Biol Sci 255:13–32CrossRefGoogle Scholar
  20. Gray EG, Young JZ (1964) Electron microscopy of synaptic structure of octopus brain. J Cell Biol 21:87–103PubMedCrossRefGoogle Scholar
  21. Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, CambridgeGoogle Scholar
  22. Hochner B (2012) An embodied view of octopus neurobiology. Curr Biol 22:R887–R892PubMedCrossRefGoogle Scholar
  23. Huffard CL, Boneka F, Full RJ (2005) Underwater bipedal locomotion by octopuses in disguise. Science 307:1927PubMedCrossRefGoogle Scholar
  24. Kime DE, Messenger JB (1990) Monoamines in the cephalopod CNS—an HPLC analysis. Comp Biochem Physiol Part C: Pharmacol Toxicol Endocrinol 96:49–57CrossRefGoogle Scholar
  25. Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P (2012) Soft robot arm inspired by the octopus. Adv Robot 26:709–727CrossRefGoogle Scholar
  26. Margheri L, Mazzolai B, Dario P, Laschi C (2011a) A bioengineering approach for in vivo measurements of the octopus arms. J Shellfish Res 30:1012Google Scholar
  27. Margheri L, Ponte G, Mazzolai B, Laschi C, Fiorito G (2011b) Non-invasive study of Octopus vulgaris arm morphology using ultrasound. J Exp Biol 214:3727–3731PubMedCrossRefGoogle Scholar
  28. Margheri L, Laschi C, Mazzolai B (2012) Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspir Biomim 7:025004PubMedCrossRefGoogle Scholar
  29. Mäthger LM, Hanlon RT (2007) Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res 329:179–186PubMedCrossRefGoogle Scholar
  30. Mäthger LM, Denton EJ, Marshall NJ, Hanlon RT (2009) Mechanisms and behavioural functions of structural coloration in cephalopods. J R Soc Interface 6:S149–S163PubMedCrossRefGoogle Scholar
  31. Mazzolai B, Margheri L, Cianchetti M, Dario P, Laschi C (2012) Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir Biomim 7:025005PubMedCrossRefGoogle Scholar
  32. Messenger JB (1996) Neurotransmitters of cephalopods. Inv Neurosci 2:95–114CrossRefGoogle Scholar
  33. Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307CrossRefGoogle Scholar
  34. Ponte G (2012) Distribution and preliminary functional analysis of some modulators in the cephalopod mollusc Octopus vulgaris. PhD Thesis, Università della Calabria, Italy; Stazione Zoologica Anton Dohrn, Napoli, ItalyGoogle Scholar
  35. Ponte G, Fiorito G (2013) A special issue on cephalopod biology: contributions of a community to the advancements of the biology of cephalopods. J Exp Mar Biol Ecol. doi:10.1016/j.jembe.2013.02.005 Google Scholar
  36. Sattelle DB, Buckingham SD (2006) Invertebrate studies and their ongoing contributions to neuroscience. Invert Neurosci 6:1–3PubMedCrossRefGoogle Scholar
  37. Smith JA, Andrews PLR, Hawkins P, Louhimies S, Ponte G, Dickel L (2013) Cephalopod research and EU Directive 2010/63/EU: requirements, impacts and ethical review processes. J Exp Mar Biol Ecol. doi:10.1016/j.jembe.2013.02.009 Google Scholar
  38. Tansey EM (1978) A histochemical study of the cephalopod brain. PhD University of Sheffield, UKGoogle Scholar
  39. Tansey EM (1979) Neurotransmitters in the cephalopod brain. Comp Biochem Physiol Part C: Pharmacol Toxicol Endocrinol 64:173–182CrossRefGoogle Scholar
  40. Wollesen T, Loesel R, Wanninger A (2008) FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, Idiosepius notoides. Acta Biol Hung 59(Suppl.):111–116PubMedCrossRefGoogle Scholar
  41. Wollesen T, Cummins SF, Degnan BM, Wanninger A (2010a) FMRFamide gene and peptide expression during central nervous system development of the cephalopod mollusk, Idiosepius notoides. Evol Dev 12:113–130PubMedCrossRefGoogle Scholar
  42. Wollesen T, Degnan BM, Wanninger A (2010b) Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides. Cell Tissue Res 342:161–178PubMedCrossRefGoogle Scholar
  43. Wollesen T, Sukhsangchan C, Seixas P, Nabhitabhata J, Wanninger A (2012) Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. J Morphol 273:776–790PubMedCrossRefGoogle Scholar
  44. Young JZ (1985) Cephalopods and neuroscience. Biol Bull (Woods Hole) 168:153–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giovanna Ponte
    • 1
  • Ariane Dröscher
    • 2
  • Graziano Fiorito
    • 1
  1. 1.Associazione Cephalopod Research ‘CephRes-ONLUS’NaplesItaly
  2. 2.Dipartimento di Storia, Culture, CiviltàUniversità degli Studi di BolognaBolognaItaly

Personalised recommendations