Invertebrate Neuroscience

, Volume 13, Issue 1, pp 71–84

Characterisation of AmphiAmR4, an amphioxus (Branchiostoma floridae) α2-adrenergic-like G-protein-coupled receptor

Original Paper

Abstract

Little is known about the evolutionary relationship between vertebrate adrenergic receptors and invertebrate octopamine and tyramine receptors. The complexity of the adrenergic signalling system is believed to be an innovation of the vertebrate lineage but the presence of noradrenaline has been reported in some invertebrate species. The cephalochordate, amphioxus (Branchiostoma floridae), is an ideal model organism for studying the evolution of vertebrate GPCRs, given its unique position at the base of the chordate lineage. Here, we describe the pharmacological characterisation and second messenger coupling abilities of AmphiAmR4, which clusters with α2-adrenergic receptors in a phylogenetic tree but also shares a high sequence similarity to invertebrate octopamine/tyramine receptors in both BLAST and Hidden Markov Model analyses. Thus, it was of particular interest to determine if AmphiAmR4 displayed similar functional properties to the vertebrate α2-adrenergic receptors or to invertebrate octopamine or tyramine receptors. When stably expressed in Chinese hamster ovary (CHO) cells, noradrenaline couples the receptor to both the activation of adenylyl cyclase and to the activation of the MAPKinase pathway. Pharmacological studies with a wide range of agonists and antagonists suggest that AmphiAmR4 functions as an α2-adrenergic-like receptor when expressed in CHO cells.

Keywords

α2-Adrenergic receptor GPCR Amphioxus Cyclic AMP MAPKinase Expression in Chinese hamster ovary cells 

Abbreviations

CHO

Chinese hamster ovary

D-PBS

Dulbecco’s phosphate-buffered saline

ERK

Extracellular signal-related kinase

FBS

Foetal bovine serum

GFP

Green fluorescent protein

GPCR

G-protein-coupled receptor

5-HT

5-Hydroxytryptamine

IBMX

3-Isobutyl methyl xanthine

MAPK

Mitogen-activated protein kinase

ORF

Open reading frame

TM

Transmembrane domain

Supplementary material

10158_2012_145_MOESM1_ESM.docx (560 kb)
Supplementary material 1 (DOCX 559 kb)

References

  1. Airriess CN, Rudling JE, Midgley JM, Evans PD (1997) Selective inhibition of adenylyl cyclase by octopamine via a human cloned α2A-adrenoceptor. Brit J Pharmacol 122:191–198CrossRefGoogle Scholar
  2. Arakawa S, Gocayne JD, McCombie WR, Urquhart DA, Hall LM, Fraser CM, Venter JC (1990) Cloning, localization, and permanent expression of a Drosophila octopamine receptor. Neuron 4:343–354PubMedCrossRefGoogle Scholar
  3. Arthur JM, Casanas SJ, Raymond JR (1993) Partial agonist properties of rauwolscine and yohimbine for the inhibition of adenylyl cyclase by recombinant human 5-HT1A receptors. Biochem Pharmacol 45:2337–2341PubMedCrossRefGoogle Scholar
  4. Baker JG, Hill SJ (2007) Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates. Trends Pharmacol Sci 28:374–381PubMedCrossRefGoogle Scholar
  5. Baker JG, Hall IP, Hill SJ (2003) Agonist and inverse agonist actions of β-Blockers at the human β2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol 64:1357–1369PubMedCrossRefGoogle Scholar
  6. Balmanno K, Cook SJ (1999) Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18:3085–3097PubMedCrossRefGoogle Scholar
  7. Berry M (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90:257–271PubMedCrossRefGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  9. Burman C (2008) The identification and characterisation of aminergic G-protein coupled receptors from amphioxus. PhD Thesis, University of Cambridge, Cambridge, p 326Google Scholar
  10. Burman C, Evans P (2010) Amphioxus expresses both vertebrate-type and invertebrate-type dopamine D1 receptors. Invert Neurosci 10:93–105PubMedCrossRefGoogle Scholar
  11. Burman C, Maqueira B, Coadwell J, Evans P (2007) Eleven new putative aminergic G-protein coupled receptors from Amphioxus (Branchiostoma floridae): identification, sequence analysis and phylogenetic relationship. Invert Neurosci 7:87–98PubMedCrossRefGoogle Scholar
  12. Burman C, Reale V, Srivastava DP, Evans PD (2009) Identification and characterization of a novel amphioxus dopamine D1-like receptor. J Neurochem 111:26–36PubMedCrossRefGoogle Scholar
  13. Bylund DB (1988) Sub types of α2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 9:356–361PubMedCrossRefGoogle Scholar
  14. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) International union of pharmacology nomenclature of adrenoceptors. Pharmacol Revs 46:121–136Google Scholar
  15. Cazzamali G, Klaerke DA, Grimmelikhuijzen CJP (2005) A new family of insect tyramine receptors. Biochem Biophys Res Comm 338:1189–1196PubMedCrossRefGoogle Scholar
  16. Chen M, Yang H, Xu B, Wang F, Liu B (2008) Catecholaminergic responses to environmental stress in the hemolymph of zhikong scallop Chlamys farreri. J Exp Zool Part A: Ecological Genetics and Physiology 309A:289–296CrossRefGoogle Scholar
  17. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3 K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192PubMedCrossRefGoogle Scholar
  18. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167PubMedCrossRefGoogle Scholar
  19. Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ (1997) Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. J Biol Chem 272:19125–19132PubMedCrossRefGoogle Scholar
  20. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968PubMedCrossRefGoogle Scholar
  21. Docherty JR (1998) Subtypes of functional α1- and α2-adrenoceptors. Eur J Pharmacol 361:1–15PubMedCrossRefGoogle Scholar
  22. Eason M, Kurose H, Holt B, Raymond J, Liggett SB (1992) Simultaneous coupling of α2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of α2C10, α2C4, and α2C2 adrenergic receptors to Gi and Gs. J Biol Chem 267:15795–15801PubMedGoogle Scholar
  23. Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 15:317–473CrossRefGoogle Scholar
  24. Evans P, Maqueira B (2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 5:111–118PubMedCrossRefGoogle Scholar
  25. Evans PD, Robb S, Cheek TR, Reale V, Hannan FL, Swales LS, Hall LM, Midgley JM (1995) Agonist-specific coupling of G-protein-coupled receptors to second-messenger systems. Prog Brain Res 106:259–268PubMedCrossRefGoogle Scholar
  26. Flordellis C, Berguerand M, Gouache P, Barbu V, Gavras H, Handy D, Béréziat G, Masliah J (1995) Adrenergic receptor subtypes expressed in Chinese hamster ovary cells activate differentially mitogen-activated protein kinase by a p21 independent pathway. J Biol Chem 270:3491–3494PubMedCrossRefGoogle Scholar
  27. George S, Bungay P, Naylor L (1997) Functional coupling of endogenous serotonin (5-HT1B) and calcitonin (C1a) receptors in CHO cells to a cyclic AMP-responsive luciferase reporter gene. J Neurochem 69:1278–1285PubMedCrossRefGoogle Scholar
  28. Glaizer B (1968) Pharmacological mapping of cells in the suboesophageal ganglia of Helix aspersa. In: Salanki J (ed) Symposium on neurobiol of inverts. Plenum Press, New York, pp 267–284Google Scholar
  29. Goldsmith Z, Dhanasekaran D (2007) G protein regulation of MAPK networks. Oncogene 26:3122–3142PubMedCrossRefGoogle Scholar
  30. Gyires K, Zádori ZS, Török T, Mátyus P (2009) alpha(2)-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int 55:447–453PubMedCrossRefGoogle Scholar
  31. Han K-A, Millar NS, Davis RL (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci 18:3650–3658PubMedGoogle Scholar
  32. Harris TE, Persaud SJ, Jones PM (1996) Atypical isoforms of PKC and insulin secretion from pancreatic β-cells: evidence using Gö 6976 and Ro 31–8220 as PKC inhibitors. Biochem Biophys Res Comm 227:672–676PubMedCrossRefGoogle Scholar
  33. Hawes BE, Luttrell LM, van Biesen T, Lefkowitz RJ (1996) Phosphatidylinositol 3-Kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signaling pathway. J Biol Chem 271:12133–12136PubMedCrossRefGoogle Scholar
  34. Hirai T, Chida K (2003) Protein kinase Cζ (PKCζ): activation mechanisms and cellular functions. J Biochem 133:1–7PubMedCrossRefGoogle Scholar
  35. Hoffman BB, Lefkowitz RJ (1980) [3H]WB4101–Caution about its role as an α-adrenergic subtype selective radioligand. Biochem Pharmacol 29:1537–1541PubMedCrossRefGoogle Scholar
  36. Hsieh SL, Chen SM, Yang YH, Kuo CM (2006) Involvement of norepinephrine in the hyperglycemic responses of the freshwater giant prawn, Macrobrachium rosenbergii, under cold shock. Comp Biochem Physiol Part A Mol Integ Physiol 143:254–263CrossRefGoogle Scholar
  37. Huang J, Ohta H, Inoue N, Takao H, Kita T, Ozoe F, Ozoe Y (2009) Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Insect Biochem Mol Biol 39:842–849PubMedCrossRefGoogle Scholar
  38. Insel PA, Ostrom RS (2003) Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell Mol Neurobiol 23:305–314Google Scholar
  39. Jasper JR, Lesnick JD, Chang LK, Yamanishi SS, Chang TK, Hsu SAO, Daunt DA, Bonhaus DW, Eglen RM (1998) Ligand efficacy and potency at recombinant α2-adrenergic receptors: agonist-mediated [35s]GTPγs binding. Biochem Pharmacol 55:1035–1043PubMedCrossRefGoogle Scholar
  40. Kenakin T (1995) Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci 16:232–238PubMedCrossRefGoogle Scholar
  41. Kenakin T (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72:1393–1401PubMedCrossRefGoogle Scholar
  42. Kimura Y, Yoshida M, Morisawa M (2003) Interaction between noradrenaline or adrenaline and the β1-adrenergic receptor in the nervous system triggers early metamorphosis of larvae in the ascidian, Ciona savignyi. Dev Biol 258:129–140PubMedCrossRefGoogle Scholar
  43. Kovalenko M, Rönnstrand L, Heldin C-H, Loubtchenkov M, Gazit A, Levitzki A, Böhmer FD (1997) Phosphorylation Site-Specific Inhibition of Platelet-Derived Growth Factor β-Receptor Autophosphorylation by the Receptor Blocking Tyrphostin AG1296. Biochem 36:6260–6269CrossRefGoogle Scholar
  44. Kukkonen JP, Renvaktar A, Shariatmadari R, Åkerman KEO (1998) Ligand- and subtype-selective coupling of human a2—adrenoceptors to Ca++ elevation in Chinese hamster ovary cells. J Pharmacol Exp Therap 287:667–671Google Scholar
  45. Lacoste A, De Cian M-C, Cueff A, Poulet SA (2001) Noradrenaline and α-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells. J Cell Sci 114:3557–3564PubMedGoogle Scholar
  46. Li L, Zhou Y, Wang C, Zhao Y-L, Zhang Z-G, Fan D, Cui X-B, Wu L–L (2010) Src tyrosine kinase regulates angiotensin II-induced protein kinase Czeta activation and proliferation in vascular smooth muscle cells. Peptides 31:1159–1164PubMedCrossRefGoogle Scholar
  47. Luttrell LM, Kenakin TP (2011) Refining efficacy: allosterism and bias in G protein-coupled receptor signaling. Methods Mol Biol 756:3–35PubMedCrossRefGoogle Scholar
  48. Luttrell DK, Luttrell LM (2004) Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23:7969–7978PubMedCrossRefGoogle Scholar
  49. Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila β-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94:547–560PubMedCrossRefGoogle Scholar
  50. Michaelidis B, Loumbourdis NS, Kapaki E (2002) Analysis of monoamines, adenosine and GABA in tissues of the land snail Helix lucorum and lizard Agama stellio stellio during hibernation. J Exp Biol 205:1135–1143PubMedGoogle Scholar
  51. Michel AD, Chessell IP, Hibell AD, Simon J, Humphrey PP (1998) Identification and characterization of an endogenous P2X7 (P2Z) receptor in CHO-K1 cells. Brit J Pharmacol 125:1194–1201CrossRefGoogle Scholar
  52. Moret F, Guilland JC, Coudouel S, Rochette L, Vernier P (2004) Distribution of tyrosine hydroxylase, dopamine, and serotonin in the central nervous system of amphioxus (Branchiostoma lanceolatum): implications for the evolution of catecholamine systems in vertebrates. J Comp Neurol 468:135–150PubMedCrossRefGoogle Scholar
  53. Nordstrom KJ, Fredriksson R, Schioth HB (2008) The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors. BMC Evol Biol 8:9PubMedCrossRefGoogle Scholar
  54. Osherov N, Levitzki A (1994) Epidermal-growth-factor-dependent activation of the Src-family kinases. Eur J Biochem 225:1047–1053PubMedCrossRefGoogle Scholar
  55. Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066PubMedCrossRefGoogle Scholar
  56. Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedCrossRefGoogle Scholar
  57. Robb S, Cheek TR, Hannan FL, Hall LM, Midgley JM, Evans PD (1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J 13:1325–1330PubMedGoogle Scholar
  58. Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Ann Rev Entomol 50:447–477CrossRefGoogle Scholar
  59. Ruuskanen JO, Xhaard H, Marjamaki A, Salaneck E, Salminen T, Yan Y-L, Postlethwait JH, Johnson MS, Larhammar D, Scheinin M (2004) Identification of duplicated fourth α2-adrenergic receptor subtype by cloning and mapping of five receptor genes in Zebrafish. Mol Biol Evol 21:14–28PubMedCrossRefGoogle Scholar
  60. Shah BH, Catt KJ (2004) GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci 27:48–53PubMedCrossRefGoogle Scholar
  61. Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans PD (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J Neurosci 25:6145–6155PubMedCrossRefGoogle Scholar
  62. Steinberg SF (2008) Structural basis of protein Kinase C isoform function. Physiol Revs 88:1341–1378CrossRefGoogle Scholar
  63. Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT (1994) A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell 77:83–93PubMedCrossRefGoogle Scholar
  64. Sun M, Yang L, Feldman RI, Sun X-m, Bhalla KN, Jove R, Nicosia SV, Cheng JQ (2003) Activation of phosphatidylinositol 3-Kinase/Akt pathway by Androgen through Interaction of p85α, Androgen Receptor, and Src. J Biol Chem 278:42992–43000PubMedCrossRefGoogle Scholar
  65. Swatton JE, Sellers LA, Faull RL, Holland A, Iritani S, Bahn S (2004) Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Eur J Neurosci 19:2711–2719PubMedCrossRefGoogle Scholar
  66. Thandi S, Blank JL, Challiss RAJ (2002) Group-I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to extracellular signal-regulated kinase (ERK) activation via distinct, but overlapping, signalling pathways. J Neurochem 83:1139–1153PubMedCrossRefGoogle Scholar
  67. Walker S, Cunniffe N, Bootman M, Roderick L (2008) Dynamic imaging of calcium and STIM1 in the same cell using wide-field and TIRF microscopy. Biotechniques 45:347–348PubMedCrossRefGoogle Scholar
  68. Yang K-J, Shin S, Piao L, Shin E, Li Y, Park KA, Byun HS, Won M, Hong J, Kweon GR, Hur GM, Seok JH, Chun T, Brazil DP, Hemmings BA, Park J (2008) Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding. J Biol Chem 283:1480–1491PubMedCrossRefGoogle Scholar
  69. Zhang W-P, Ouyang M, Thomas SA (2004) Potency of catecholamines and other -tyrosine derivatives at the cloned mouse adrenergic receptors. Neuropharmacol 47:438–449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.The Inositide LaboratoryThe Babraham InstituteCambridgeUK

Personalised recommendations