Invertebrate Neuroscience

, Volume 11, Issue 2, pp 73–83 | Cite as

Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson’s disease, Alzheimer’s disease and autism spectrum disorder

  • Fernando Calahorro
  • Manuel Ruiz-RubioEmail author


The nematode Caenorhabditis elegans has a very well-defined and genetically tractable nervous system which offers an effective model to explore basic mechanistic pathways that might be underpin complex human neurological diseases. Here, the role C. elegans is playing in understanding two neurodegenerative conditions, Parkinson’s and Alzheimer’s disease (AD), and a complex neurological condition, autism, is used as an exemplar of the utility of this model system. C. elegans is an imperfect model of Parkinson’s disease because it lacks orthologues of the human disease-related genes PARK1 and LRRK2 which are linked to the autosomal dominant form of this disease. Despite this fact, the nematode is a good model because it allows transgenic expression of these human genes and the study of the impact on dopaminergic neurons in several genetic backgrounds and environmental conditions. For AD, C. elegans has orthologues of the amyloid precursor protein and both human presenilins, PS1 and PS2. In addition, many of the neurotoxic properties linked with Aβ amyloid and tau peptides can be studied in the nematode. Autism spectrum disorder is a complex neurodevelopmental disorder characterised by impairments in human social interaction, difficulties in communication, and restrictive and repetitive behaviours. Establishing C. elegans as a model for this complex behavioural disorder is difficult; however, abnormalities in neuronal synaptic communication are implicated in the aetiology of the disorder. Numerous studies have associated autism with mutations in several genes involved in excitatory and inhibitory synapses in the mammalian brain, including neuroligin, neurexin and shank, for which there are C. elegans orthologues. Thus, several molecular pathways and behavioural phenotypes in C. elegans have been related to autism. In general, the nematode offers a series of advantages that combined with knowledge from other animal models and human research, provides a powerful complementary experimental approach for understanding the molecular mechanisms and underlying aetiology of complex neurological diseases.


Caenorhabditis elegans Parkinson’s disease Alzheimer’s disease Autism spectrum disorder 



We thank Prof. Lindy M. Holden-Dye for critical reading of the manuscript and for detailed comments. We also are grateful to Dr. Antonio Miranda-Vizuete for his help with the DiI dye-filling assay and valuable support. This work was supported by grant PI0197, Consejería de Salud, Junta de Andalucía.


  1. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9(5):341–355PubMedCrossRefGoogle Scholar
  2. Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324PubMedCrossRefGoogle Scholar
  3. Antoshechkin I, Sternberg PW (2007) The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev 8:518–532CrossRefGoogle Scholar
  4. Asikainen S, Vartiainen S, Lakso M, Nass R, Wong G (2005) Selective sensitivity of Caenorhabditis elegans neurons to RNA interference. Neuroreport 16(18):1995–1999PubMedCrossRefGoogle Scholar
  5. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25(1):63–77PubMedCrossRefGoogle Scholar
  6. Baluchnejadmojarad T, Roghani M, Nadoushan MR, Bagheri M (2009) Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model. Phytother Res 23(1):132–135PubMedCrossRefGoogle Scholar
  7. Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282(5396):2028–2033PubMedCrossRefGoogle Scholar
  8. Bartels T, Choi JG, Selkoe DJ (2011) Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110PubMedCrossRefGoogle Scholar
  9. Baudouin S, Scheiffele P (2010) SnapShot: neuroligin–neurexin complexes. Cell 141(5):908PubMedCrossRefGoogle Scholar
  10. Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U et al (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42(6):489–491PubMedCrossRefGoogle Scholar
  11. Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68(2):270–281PubMedCrossRefGoogle Scholar
  12. Biswas S, Reinhard J, Oakeshott J, Russell R, Srinivasan MV, Claudianos C (2010) Sensory regulation of neuroligins and neurexin I in the honeybee brain. PLoS One 5(2):e9133PubMedCrossRefGoogle Scholar
  13. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259PubMedCrossRefGoogle Scholar
  14. Bourgeron T (2009) A synaptic trek to autism. Curr Opin Neurobiol 19(2):231–234PubMedCrossRefGoogle Scholar
  15. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedGoogle Scholar
  16. Brown RG, Marsden CD (1990) Cognitive function in Parkinson’s disease: from description to theory. Trends Neurosci 13(1):21–29PubMedCrossRefGoogle Scholar
  17. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80(14):4546–4550PubMedCrossRefGoogle Scholar
  18. Calahorro F (2011) Genetics of autism: Caenorhabditis elegans as an experimental tool in the study of the neuronal synaptic function. Ph. D. thesis, Universidad de Córdoba, CórdobaGoogle Scholar
  19. Calahorro F, Alejandre E, Ruiz-Rubio M (2009) Osmotic avoidance in Caenorhabditis elegans: synaptic function of two genes, orthologues of human NRXN1 and NLGN1, as candidates for autism. J Vis Exp 34:e-1616. doi:  10.3791/1616.
  20. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96PubMedCrossRefGoogle Scholar
  21. Calixto A, Chelur D, Topalidou I, Chen X, Chalfie M (2010) Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods 7(7):554–559PubMedCrossRefGoogle Scholar
  22. Cao S, Gelwix CC, Caldwell KA, Caldwell GA (2005) Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 25(15):3801–3812PubMedCrossRefGoogle Scholar
  23. Centre for Disease Control and Prevention (2009) Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006. MMWR Surveill Summ 58(10):1–20Google Scholar
  24. Chalfie M, White J (1986) The nervous system. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 337–391Google Scholar
  25. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169PubMedCrossRefGoogle Scholar
  26. Conforti L, Adalbert R, Coleman MP (2007) Neuronal death: where does the end begin? Trends Neurosci 30(4):159–166PubMedCrossRefGoogle Scholar
  27. Cuervo AM, Wong ES, Martinez-Vicente M (2010) Protein degradation, aggregation, and misfolding. Mov Disord 25(Suppl 1):S49–S54PubMedCrossRefGoogle Scholar
  28. Dauer W, Ho CC (2010) The biology and pathology of the familial Parkinson’s disease protein LRRK2. Mov Disord 25(Suppl 1):S40–S43PubMedCrossRefGoogle Scholar
  29. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66(5):646–661PubMedCrossRefGoogle Scholar
  30. De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113(Pt 11):1857–1870PubMedGoogle Scholar
  31. Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E et al (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6(7):708–716PubMedCrossRefGoogle Scholar
  32. DelleDonne A, Klos KJ, Fujishiro H, Ahmed Z, Parisi JE, Josephs KA et al (2008) Incidental Lewy body disease and preclinical Parkinson disease. Arch Neurol 65(8):1074–1080PubMedCrossRefGoogle Scholar
  33. Diomede L, Cassata G, Fiordaliso F, Salio M, Ami D, Natalello A et al (2010) Tetracycline and its analogues protect Caenorhabditis elegans from beta amyloid-induced toxicity by targeting oligomers. Neurobiol Dis 40(2):424–431PubMedCrossRefGoogle Scholar
  34. Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y (2010) Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J Alzheimers Dis 19(2):681–690PubMedGoogle Scholar
  35. Dostal V, Roberts CM, Link CD (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of beta-amyloid peptide toxicity. Genetics 186(3):857–866PubMedCrossRefGoogle Scholar
  36. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27PubMedCrossRefGoogle Scholar
  37. Eapen V (2011) Genetic basis of autism: is there a way forward? Curr Opin Psychiatry 24(3):226–236PubMedCrossRefGoogle Scholar
  38. Fay DS, Fluet A, Johnson CJ, Link CD (1998) In vivo aggregation of beta-amyloid peptide variants. J Neurochem 71(4):1616–1625PubMedCrossRefGoogle Scholar
  39. Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD, Shen K et al (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57(3):353–363PubMedCrossRefGoogle Scholar
  40. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811PubMedCrossRefGoogle Scholar
  41. Folstein S, Rutter M (1977) Genetic influences and infantile autism. Nature 265(5596):726–728PubMedCrossRefGoogle Scholar
  42. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55(3):259–272PubMedCrossRefGoogle Scholar
  43. Garber K (2007) Neuroscience. Autism’s cause may reside in abnormalities at the synapse. Science 317(5835):190–191PubMedCrossRefGoogle Scholar
  44. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119(7):1013–1026PubMedCrossRefGoogle Scholar
  45. Guthrie CR, Schellenberg GD, Kraemer BC (2009) SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Hum Mol Genet 18(10):1825–1838PubMedCrossRefGoogle Scholar
  46. Haklai-Topper L, Soutschek J, Sabanay H, Scheel J, Hobert O, Peles E (2011) The neurexin superfamily of Caenorhabditis elegans. Gene Expr Patterns 11(1–2):144–150PubMedCrossRefGoogle Scholar
  47. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry (advanced online publication)Google Scholar
  48. Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci USA 105(2):728–733PubMedCrossRefGoogle Scholar
  49. Hattori N, Kitada T, Matsumine H, Asakawa S, Yamamura Y, Yoshino H et al (1998) Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol 44(6):935–941PubMedCrossRefGoogle Scholar
  50. Hedgecock EM, Sulston JE, Thomson JN (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220(4603):1277–1279PubMedCrossRefGoogle Scholar
  51. Hunter JW, Mullen GP, McManus JR, Heatherly JM, Duke A, Rand JB (2010) Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 3(5–6):366–376PubMedCrossRefGoogle Scholar
  52. Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C et al (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81(3):435–443PubMedCrossRefGoogle Scholar
  53. Jadiya P, Chatterjee M, Sammi SR, Kaur S, Palit G, Nazir A (2011) Sir-2.1 modulates ‘calorie-restriction-mediated’ prevention of neurodegeneration in Caenorhabditis elegans: implications for Parkinson’s disease. Biochem Biophys Res Commun 413(2):306–310PubMedCrossRefGoogle Scholar
  54. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29PubMedCrossRefGoogle Scholar
  55. Jee C, Lee J, Lee JI, Lee WH, Park BJ, Yu JR et al (2004) SHN-1, a Shank homologue in C. elegans, affects defecation rhythm via the inositol-1,4,5-trisphosphate receptor. FEBS Lett 561(1–3):29–36PubMedCrossRefGoogle Scholar
  56. Jellinger KA (2001) The pathology of Parkinson’s disease. Adv Neurol 86:55–72PubMedGoogle Scholar
  57. Kanthasamy A, Jin H, Mehrotra S, Mishra R, Rana A (2010) Novel cell death signaling pathways in neurotoxicity models of dopaminergic degeneration: relevance to oxidative stress and neuroinflammation in Parkinson’s disease. Neurotoxicology 31(5):555–561PubMedCrossRefGoogle Scholar
  58. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y et al (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82(1):199–207PubMedCrossRefGoogle Scholar
  59. Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC et al (2011) Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 168(9):904–912PubMedCrossRefGoogle Scholar
  60. Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 100(11):6382–6387PubMedCrossRefGoogle Scholar
  61. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608PubMedCrossRefGoogle Scholar
  62. Kraemer BC, Schellenberg GD (2007) SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum Mol Genet 16(16):1959–1971PubMedCrossRefGoogle Scholar
  63. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 100(17):9980–9985PubMedCrossRefGoogle Scholar
  64. Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD (2006) Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet 15(9):1483–1496PubMedCrossRefGoogle Scholar
  65. Kreienkamp HJ (2008) Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 186:365–380. doi: 10.1007/978-3-540-72843-6_15 PubMedCrossRefGoogle Scholar
  66. Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M et al (2006) Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 281(1):334–340PubMedCrossRefGoogle Scholar
  67. Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W (2000) Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10(5):703–713PubMedCrossRefGoogle Scholar
  68. Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R et al (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86(1):165–172PubMedCrossRefGoogle Scholar
  69. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–557PubMedCrossRefGoogle Scholar
  70. Lawson-Yuen A, Saldivar JS, Sommer S, Picker J (2008) Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet 16(5):614–618PubMedCrossRefGoogle Scholar
  71. Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377(6547):351–354PubMedCrossRefGoogle Scholar
  72. Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374(9701):1627–1638PubMedCrossRefGoogle Scholar
  73. Lewy FH (1912) Paralysis agitans. Pathologische anatomie. In: Lewandowski M (ed) Handbuch der neurologie. Springer, Berlin, pp 920–933Google Scholar
  74. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92(20):9368–9372PubMedCrossRefGoogle Scholar
  75. Liu Z, Hamamichi S, Dae Lee B, Yang D, Ray A, Caldwell GA et al (2011) Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson’s disease models. Hum Mol Genet. doi: 10.1093/hmg/ddr312
  76. Locke CJ, Fox SA, Caldwell GA, Caldwell KA (2008) Acetaminophen attenuates dopamine neuron degeneration in animal models of Parkinson’s disease. Neurosci Lett 439(2):129–133PubMedCrossRefGoogle Scholar
  77. Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8(11):425–427PubMedCrossRefGoogle Scholar
  78. Markesbery WR, Jicha GA, Liu H, Schmitt FA (2009) Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol 68(7):816–822PubMedCrossRefGoogle Scholar
  79. McColl G, Roberts BR, Gunn AP, Perez KA, Tew DJ, Masters CL et al (2009) The Caenorhabditis elegans A beta 1-42 model of Alzheimer disease predominantly expresses A beta 3-42. J Biol Chem 284(34):22697–22702PubMedCrossRefGoogle Scholar
  80. McKeith I, Cummings J (2005) Behavioural changes and psychological symptoms in dementia disorders. Lancet Neurol 4(11):735–742PubMedCrossRefGoogle Scholar
  81. McKhann GM (2011) Changing concepts of Alzheimer disease. JAMA 305(23):2458–2459PubMedCrossRefGoogle Scholar
  82. Mikolaenko I, Pletnikova O, Kawas CH, O’Brien R, Resnick SM, Crain B et al (2005) Alpha-synuclein lesions in normal aging, Parkinson disease, and Alzheimer disease: evidence from the Baltimore Longitudinal Study of Aging (BLSA). J Neuropathol Exp Neurol 64(2):156–162PubMedGoogle Scholar
  83. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J et al (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81(6):1289–1297PubMedCrossRefGoogle Scholar
  84. Moy SS, Nadler JJ (2008) Advances in behavioral genetics: mouse models of autism. Mol Psychiatry 13(1):4–26PubMedCrossRefGoogle Scholar
  85. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J et al (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23(3):569–582PubMedCrossRefGoogle Scholar
  86. Nam CI, Chen L (2005) Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci USA 102(17):6137–6142PubMedCrossRefGoogle Scholar
  87. Nass R, Hall DH, Miller DM 3rd, Blakely RD (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 99(5):3264–3269PubMedCrossRefGoogle Scholar
  88. Oh WC, Song HO, Cho JH, Park BJ (2011) ANK repeat-domain of SHN-1 Is indispensable for in vivo SHN-1 function in C. elegans. Mol Cells 31(1):79–84PubMedCrossRefGoogle Scholar
  89. Pan T, Kondo S, Le W, Jankovic J (2009) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969–1978CrossRefGoogle Scholar
  90. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047PubMedCrossRefGoogle Scholar
  91. Pu P, Le WD (2006) C. elegans as a model system for Parkinson disease. Neurosci Bull 22(2):124–128PubMedGoogle Scholar
  92. Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J et al (2009) LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29(29):9210–9218PubMedCrossRefGoogle Scholar
  93. Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R (2009) 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res 87(3):723–732PubMedCrossRefGoogle Scholar
  94. Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26(3):619–631PubMedCrossRefGoogle Scholar
  95. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6):657–669PubMedCrossRefGoogle Scholar
  96. Schmidt E, Seifert M, Baumeister R (2007) Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegener Dis 4(2–3):199–217PubMedCrossRefGoogle Scholar
  97. Selkoe DJ (2000) The origins of Alzheimer disease: a is for amyloid. JAMA 283(12):1615–1617PubMedCrossRefGoogle Scholar
  98. Selkoe DJ, Wolfe MS (2007) Presenilin: running with scissors in the membrane. Cell 131(2):215–221PubMedCrossRefGoogle Scholar
  99. Settivari R, Levora J, Nass R (2009) The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in Caenorhabditis elegans models of manganism and parkinson disease. J Biol Chem 284(51):35758–35768PubMedCrossRefGoogle Scholar
  100. Shastry BS (1998) Molecular genetics of familial Alzheimer disease. Am J Med Sci 315(4):266–272PubMedCrossRefGoogle Scholar
  101. Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A et al (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107(7):893–903PubMedCrossRefGoogle Scholar
  102. Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11(7):490–502PubMedCrossRefGoogle Scholar
  103. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841PubMedCrossRefGoogle Scholar
  104. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95(13):7737–7741PubMedCrossRefGoogle Scholar
  105. Standaert DG, Yacoubian TA (2010) Target validation: the Parkinson disease perspective. Dis Model Mech 3(5–6):259–262PubMedCrossRefGoogle Scholar
  106. Starich TA, Herman RK, Kari CK, Yeh WH, Schackwitz WS, Schuyler MW et al (1995) Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139(1):171–188PubMedGoogle Scholar
  107. Struhl G, Greenwald I (2001) Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc Natl Acad Sci USA 98(1):229–234PubMedCrossRefGoogle Scholar
  108. Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911PubMedCrossRefGoogle Scholar
  109. Sulston JE (1976) Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275(938):287–297PubMedCrossRefGoogle Scholar
  110. Sulston JE, Brenner S (1974) The DNA of Caenorhabditis elegans. Genetics 77(1):95–104PubMedGoogle Scholar
  111. Talebizadeh Z, Bittel DC, Veatch OJ, Butler MG, Takahashi TN, Miles JH (2004) Do known mutations in neuroligin genes (NLGN3 and NLGN4) cause autism? J Autism Dev Disord 34(6):735–736PubMedCrossRefGoogle Scholar
  112. Tan EK (2007) The role of common genetic risk variants in Parkinson disease. Clin Genet 72(5):387–393PubMedCrossRefGoogle Scholar
  113. Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(R2):R183–R194Google Scholar
  114. Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395(6705):854PubMedCrossRefGoogle Scholar
  115. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263(1–2):103–112PubMedCrossRefGoogle Scholar
  116. Turner RS, Suzuki N, Chyung AS, Younkin SG, Lee VM (1996) Amyloids beta40 and beta42 are generated intracellularly in cultured human neurons and their secretion increases with maturation. J Biol Chem 271(15):8966–8970PubMedCrossRefGoogle Scholar
  117. Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70(1):1–32PubMedCrossRefGoogle Scholar
  118. Urano F, Calfon M, Yoneda T, Yun C, Kiraly M, Clark SG et al (2002) A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J Cell Biol 158(4):639–646PubMedCrossRefGoogle Scholar
  119. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160PubMedCrossRefGoogle Scholar
  120. Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K et al (2006) Neuroligins determine synapse maturation and function. Neuron 51(6):741–754PubMedCrossRefGoogle Scholar
  121. Voineskos AN, Lett TA, Lerch JP, Tiwari AK, Ameis SH, Rajji TK et al (2011) Neurexin-1 and frontal lobe white matter: an overlapping intermediate phenotype for schizophrenia and autism spectrum disorders. PLoS One 6(6):e20982PubMedCrossRefGoogle Scholar
  122. Wan L, Nie G, Zhang J, Luo Y, Zhang P, Zhang Z et al (2011) Beta-amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med 50(1):122–129PubMedCrossRefGoogle Scholar
  123. Wang X, Sliwoski GR, Buttner EA (2011) The relevance of Caenorhabditis elegans genetics for understanding human psychiatric disease. Harv Rev Psychiatry 19(4):210–218PubMedCrossRefGoogle Scholar
  124. Wentzell J, Kretzschmar D (2010) Alzheimer’s disease and tauopathy studies in flies and worms. Neurobiol Dis 40(1):21–28PubMedCrossRefGoogle Scholar
  125. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode C. elegans. Philos Trans R Soc Lond Ser B Biol Sci 314:1–340CrossRefGoogle Scholar
  126. Wiese M, Antebi A, Zheng H (2010) Intracellular trafficking and synaptic function of APL-1 in Caenorhabditis elegans. PLoS One 5(9):e12790CrossRefGoogle Scholar
  127. Wittenburg N, Eimer S, Lakowski B, Rohrig S, Rudolph C, Baumeister R (2000) Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406(6793):306–309PubMedCrossRefGoogle Scholar
  128. Wooten GF (1997) Functional anatomical and behavioral consequences of dopamine receptor stimulation. Ann NY Acad Sci 835:153–156PubMedCrossRefGoogle Scholar
  129. Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C et al (2005) Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 10(4):329–332PubMedCrossRefGoogle Scholar
  130. Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C et al (2008) Neurexin 1alpha structural variants associated with autism. Neurosci Lett 438(3):368–370PubMedCrossRefGoogle Scholar
  131. Yanagida T, Kitamura Y, Yamane K, Takahashi K, Takata K, Yanagisawa D et al (2009) Protection against oxidative stress-induced neurodegeneration by a modulator for DJ-1, the wild-type of familial Parkinson’s disease-linked PARK7. J Pharmacol Sci 109(3):463–468PubMedCrossRefGoogle Scholar
  132. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173PubMedCrossRefGoogle Scholar
  133. Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W (2007) Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 581(13):2509–2516PubMedCrossRefGoogle Scholar
  134. Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302(5646):826–830PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Departamento de Genética, Edificio Gregor MendelUniversidad de CórdobaCórdobaSpain
  2. 2.Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)CórdobaSpain

Personalised recommendations