Invertebrate Neuroscience

, Volume 11, Issue 1, pp 1–7 | Cite as

Genetic approaches to alcohol addiction: gene expression studies and recent candidates from Drosophila



Ethanol intake causes gene expression changes resulting in cellular and molecular adaptations that could be associated with a predisposition to alcohol dependence. Recently, several research groups have used high-throughput gene expression profiling to search for alcohol-responsive genes in Drosophila melanogaster. Comparison of data from these studies highlights the functional similarities in their results despite differences in their experimental approach and selection cases. Notably, alcohol-responsive gene sets associated with stress response, olfaction, metabolism, proteases, transcriptional regulation, regulation of signal transduction, nucleic acid binding and cytoskeletal organisation were markedly common to these studies. These data support the view that changes in gene expression in alcoholics are associated with widespread cellular functions.


Addiction Ethanol Brain Gene expression Microarray Drosophila 



This work was supported by a fellowship grant from the Tai Solarin University of Education. The author expresses appreciation for reviewers’ insightful comments and suggestions.

Supplementary material

10158_2010_113_MOESM1_ESM.xls (68 kb)
Supplementary material 1 (XLS 68 kb)


  1. Aroor AR, Shukla SD (2004) MAP kinase signaling in diverse effects of ethanol. Life Sci 74:2339–2364PubMedCrossRefGoogle Scholar
  2. Atkinson NS (2009) Tolerance in Drosophila. J Neurogenet 23:293–302PubMedCrossRefGoogle Scholar
  3. Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, Evans-Holm M, Hiesinger PR, Schulze KL, Rubin GM, Hoskins RA, Spradling AC (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167:761–781PubMedCrossRefGoogle Scholar
  4. Berger KH, Kong EC, Dubnau J, Tully T, Moore MS, Heberlein U (2008) Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster. Alcohol Clin Exp Res 32:895–908PubMedCrossRefGoogle Scholar
  5. Bjork K, Saarikoski TS, Arlinde C, Kovanen L, Osei-Hyiaman D, Ubaldi M, Reimers M, Hyytia P, Heilig M, Sommer WH (2006) Glutathione-S-transferase expression in the brain: possible role in ethanol preference and longevity. FASEB J 20:1826–1835PubMedCrossRefGoogle Scholar
  6. Calabrese V, Renis M, Calderone A, Russo A, Barcellona ML, Rizza V (1996) Stress proteins and SH-goups in oxidant-induced cell damage after acute ethanol administration in rat. Free Radical Bio Med 20:391–397CrossRefGoogle Scholar
  7. Devineni AV, Heberlein H (2009) Preferential ethanol consumption in Drosophila models features of addiction. Curr Biol 19:2126–2132PubMedCrossRefGoogle Scholar
  8. Devineni AV, Heberlein H (2010) Addiction-like behaviour in Drosophila. Commun Integr Biol 3:357–359PubMedCrossRefGoogle Scholar
  9. Flatscher-Bader T, MPvd Brug, Landis N, Hwang JW, Harrison E, Wilce PA (2006) Comparative gene expression in brain regions of human alcoholics. Genes Brain Behav 5:78–84PubMedCrossRefGoogle Scholar
  10. Guarnieri DJ, Heberlein U (2003) Drosophila melanogaster, a genetic model system for alcohol research. Int Rev Neurobiol 54:199–228PubMedCrossRefGoogle Scholar
  11. Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135PubMedCrossRefGoogle Scholar
  12. Heberlein U (2000) Genetics of alcohol-induced behaviors in Drosophila. Alcohol Res Health 24:185–188PubMedGoogle Scholar
  13. Heberlein U, Wolf FW, Rothenfluh A, Guarnieri DJ (2004) Molecular genetic analysis of ethanol intoxication in Drosophila melanogaster. Integr Comp Biol 44:269–274CrossRefGoogle Scholar
  14. Jackson ES, Wayland MT, Fitzgerald W, Bahn S (2005) A microarray data analysis framework for post-mortem tissues. Methods 37:247–260PubMedCrossRefGoogle Scholar
  15. Kareken DA, Claus ED, Sabri M, Dzemidzic M, Kosobud AE, Radnovich AJ, Hector D, Ramchandani VA, O’Connor SJ, Lowe M, Li TK (2004) Alcohol-related olfactory cues activate the nucleus accumbens and ventral tegmental area in high-risk drinkers: preliminary findings. Alcohol Clin Exp Res 28:550–557PubMedCrossRefGoogle Scholar
  16. Kim YK, Lee BC, Ham BJ, Yang BH, Roh S, Choi J, Kang TC, Chai YG, Choi IG (2009) Increased transforming growth factor-beta1 in alcohol dependence. J Korean Med Sci 24:941–944PubMedCrossRefGoogle Scholar
  17. Kong EC, Allouche L, Chapot PA, Vranizan K, Moore MS, Heberlein U, Wolf FW (2010) Ethanol-regulated genes that contribute to ethanol sensitivity and rapid ethanol tolerance in Drosophila. Alcohol Clin Exp Res 34:302–316PubMedCrossRefGoogle Scholar
  18. Lee S, Nahm M, Lee M, Kwon M, Kim E, Zadeh AD, Cao H, Kim HJ, Lee ZH, Oh SB, Yim J, Kolodziej PA, Lee S (2007) The F-actin-microtubule crosslinker shot is a platform for Krasavietz-mediated translational regulation of midline axon repulsion. Development 134:1767–1777PubMedCrossRefGoogle Scholar
  19. Lockhart DJ, Dong H, Bryne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridisation to high density oligonucleotide arrays. Nat Biotechnol 14:1673–1680CrossRefGoogle Scholar
  20. Luo Z, Geschwind DH (2001) Microarray applications in neuroscience. Neurobiol Dis 8:183–193PubMedCrossRefGoogle Scholar
  21. Mackay TF, Anholt RR (2006) Of flies and man: Drosophila as a model for human complex traits. Annu Rev Genomics Hum Genet 7:339–367PubMedCrossRefGoogle Scholar
  22. Miles MF, Diaz JE, DeGuzman VS (1991) Mechanisms of neuronal adaptation to ethanol. Ethanol induces Hsc70 gene transcription in NG108–15 neuroblastoma x glioma cells. J Biol Chem 266:2409–2414PubMedGoogle Scholar
  23. Moore MS, DeZazzo J, Luk AY, Tully T, Singh CM, Heberlein U (1998) Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93:997–1007PubMedCrossRefGoogle Scholar
  24. Morozova TV, Anholt RR, Mackay TF (2006) Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biol 7:R95PubMedCrossRefGoogle Scholar
  25. Morozova TV, Anholt RR, Mackay TF (2007) Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster. Genome Biol 8:R231PubMedCrossRefGoogle Scholar
  26. Mulligan MK, Ponomarev I, Hitzemann RJ, Belknap JK, Tabakoff B, Harris RA, Crabbe JC, Blednov YA, Grahame NJ, Phillips TJ, Finn DA, Hoffman PL, Iyer VR, Koob GF, Bergeson SE (2006) Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Natl Acad Sci USA 103:6368–6373PubMedCrossRefGoogle Scholar
  27. Omar R, Papolla M, Saran B (1990) Immunocytochemical detection of the 70kd-heat shock protein in alcoholic liver disease. Arch Pathol Lab Med 114:589–592PubMedGoogle Scholar
  28. Parks AL, Cook KR, Belvin M et al (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36:288–292PubMedCrossRefGoogle Scholar
  29. Pignataro L, Miller AN, Ma L, Midha S, Protiva P, Herrera DG, Harrison NL (2007) Alcohol regulates gene expression in neurons via activation of heat shock factor 1. J Neurosci 27:12957–12966PubMedCrossRefGoogle Scholar
  30. Raychoudhuri S, Sutphin PD, Chang JT, Altman RB (2001) Basic microarray analysis: grouping and feature reduction. Trends Biotechnol 19:189–193CrossRefGoogle Scholar
  31. Reiling JH, Doepfner KT, Hafen E, Stocker H (2005) Diet-dependent effects of the Drosophila Mnk1/Mnk2 homolog Lk6 on growth via eIF4E. Curr Biol 15:24–30PubMedCrossRefGoogle Scholar
  32. Rubin GM et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215PubMedCrossRefGoogle Scholar
  33. Scholz H, Ramond J, Singh CM, Heberlein U (2000) Functional ethanol tolerance in Drosophila. Neuron 28:261–271PubMedCrossRefGoogle Scholar
  34. Scholz H, Franz M, Heberlein U (2005) The hangover gene defines a stress pathway required for ethanol tolerance development. Nature 436:845–847PubMedCrossRefGoogle Scholar
  35. Singh CM, Heberlein U (2000) Genetic control of acute ethanol-induced behaviors in Drosophila. Alcohol Clin Exp Res 24:1127–1136PubMedCrossRefGoogle Scholar
  36. Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:649–705PubMedCrossRefGoogle Scholar
  37. Tang AH, Tu CP (1994) Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. J Biol Chem 269:27876–27884PubMedGoogle Scholar
  38. Tomfohr J, Lu J, Kepler T (2005) Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics 6:225PubMedCrossRefGoogle Scholar
  39. Tsuchida S, Sato K (1992) Glutathione transferases and cancer. Crit Rev Biochem Mol 27:337–384CrossRefGoogle Scholar
  40. Tsuneizumi K, Nakayama T, Kamoshida Y, Kornberg TB, Christian JL, Tabata T (1997) Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389:627–631PubMedCrossRefGoogle Scholar
  41. Urban S, Lee JR, Freeman M (2002) A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J 21:4277–4286PubMedCrossRefGoogle Scholar
  42. Urizar NL, Yang Z, Edenberg HJ, Davis RL (2007) Drosophila Homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. J Neurosci 27:4541–4551PubMedCrossRefGoogle Scholar
  43. Waxman DJ, Azaroff L (1992) Phenobarbital induction of cytochrome P-450 gene expression. Biochem J 281:577–592PubMedGoogle Scholar
  44. Wolf FW, Heberlein U (2003) Invertebrate models of drug abuse. J Neurobiol 54:161–178PubMedCrossRefGoogle Scholar
  45. Wolf FW, Rodan AR, Tsai LT, Heberlein U (2002) High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila. J Neurosci 22:11035–11044PubMedGoogle Scholar
  46. Worst TJ, Vrana KE (2005) Alcohol and gene expression in the central nervous system. Alcohol Alcohol 40:63–75PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Biology and Environmental Science, School of Life SciencesUniversity of SussexBrightonUK

Personalised recommendations