Invertebrate Neuroscience

, Volume 9, Issue 3–4, pp 195–200 | Cite as

The effect of opioids and their antagonists on the nocifensive response of Caenorhabditis elegans to noxious thermal stimuli

  • F. Nieto-Fernandez
  • S. Andrieux
  • S. Idrees
  • C. Bagnall
  • S. C. Pryor
  • R. Sood
Original Paper


Opiates modulate nociception in vertebrates. This has also been demonstrated in a number of invertebrate models. Herein, the effect of the opiate morphine and opioid neuropeptides Endomorphin 1 and 2 on the thermal avoidance (Tav) behavior of Caenorhabditis elegans is explored. Adult wild-type C. elegans N2 were collected from NGM plates using M9 buffer and exposed to morphine and endomorphine 1 and 2 in concentrations between 10−8 and 10−4 M (2.5 pmol/mg to 25 nmol/mg) for 30 min and tested for Tav. The opioid receptor antagonists Naloxone and CTOP were tested in combination with the drugs. Forty-seven percentage of the morphine exposed worms exhibited a class I response versus 76% of the control group (P < 0.001). Endomorphin 1 and 2 also caused a statistically significant reduction in class I responses, 36 and 39%, respectively. These effects were reversed with Naloxone and CTOP. Thermonocifensive behavior in C. elegans is modulated by opioids.


Opioid Nematode Nociception 



This work was supported by grants from the NIMH (COR 17138 and MRISP 47392) and the Research Foundation and Central Administration of the State University of New York.


  1. Achaval M, Penha MA, Swarowsky A, Rigon P, Xavier LL, Viola GG, Zancan DM (2005) The terrestrial Gastropoda Megalobulimus abbreviatus as a useful model for nociceptive experiments: effects of morphine and naloxone on thermal avoidance behavior. Braz J Med Biol Res 38:73–80CrossRefPubMedGoogle Scholar
  2. Barr S, Laming PR, Dick JTA, Elwood RW (2008) Nociception or pain in a decapod crustacean? Anim Behav 75:745–751CrossRefGoogle Scholar
  3. Cadet P, Stefano GB (1999) Mytilus edulis pedal ganglia express mu opiate receptor transcripts exhibiting high sequence identity with human neuronal mu1. Brain Res Mol Brain Res 74:242–246CrossRefPubMedGoogle Scholar
  4. Cadet P, Zhu W, Mantione KJ, Baggerman G, Stefano GB (2002) Cold stress alters Mytilus edulis pedal ganglia expression of mu opiate receptor transcripts determined by real-time RT-PCR and morphine levels. Brain Res Mol Brain Res 99:26–33CrossRefPubMedGoogle Scholar
  5. Dores RM, Lecaude S, Bauer D, Danielson PB (2002) Analyzing the evolution of the opioid/orphanin gene family. Mass Spectrom Rev 21:220–243CrossRefPubMedGoogle Scholar
  6. Dureus P, Louis D, Grant AV, Bilfinger TV, Stefano GB (1993) Neuropeptide Y inhibits human and invertebrate immunocyte chemotaxis, chemokinesis, and spontaneous activation. Cell Mol Neurobiol 13:541–546CrossRefPubMedGoogle Scholar
  7. Duvaux-Miret D, Stefano GB, Smith EM, Mallozzi LA, Capron A (1992) Proopiomelanocortin-derived peptides as tools of immune evasion for the human trematode schistosoma mansoni. Acta Biol Hung 43:281–286PubMedGoogle Scholar
  8. Duvaux-Miret O, Leung MK, Capron A, Stefano GB (1993) Schistosoma mansoni: an enkephalinergic system that may participate in internal and host-parasite signaling. Exp Parasitol 76:76–84CrossRefPubMedGoogle Scholar
  9. Dyakonova VE (2001) Role of opioid peptides in behavior of invertebrates. J Evol Biochem Physiol 37:335–347CrossRefGoogle Scholar
  10. Dyakonova VE, Schurmann F, Sakharov DA (1999) Effects of serotonergic and opioidergic drugs on escape behaviors and social status of male crickets. Naturwissenschaften 86:435–437CrossRefPubMedGoogle Scholar
  11. Dyakonova V, Schormann FW, Sakharov DA (2000) Social aggressiveness of female and subordinate male crickets is released by opiate receptor antagonist. Acta Biol Hung 51:363–367PubMedGoogle Scholar
  12. Goumon Y, Casares F, Pryor S, Ferguson L, Brownawell B, Cadet P, Rialas CM, Welters ID, Sonetti D, Stefano GB (2000) Ascaris suum, an intestinal parasite, produces morphine. J Immunol 165:339–343PubMedGoogle Scholar
  13. Greenberg MJ, Painter SD, Doble KE, Nagle GT, Price DA, Lehman HK (1983) The molluscan neurosecretory peptide FMRFamide: comparative pharmacology and relationship to the enkephalins. Fed Proc 42:82–86PubMedGoogle Scholar
  14. Gupta S, Pasha S, Gupta YK, Bhardwaj DK (1999) Chimeric peptide of Met-enkephalin and FMRFa induces antinociception and attenuates development of tolerance to morphine antinociception. Peptides 20:471–478CrossRefPubMedGoogle Scholar
  15. Hanke J, Willig A, Yinon U, Jaros PP (1997) Delta and kappa opioid receptors in eyestalk ganglia of a crustacean. Brain Res 744:279–284CrossRefPubMedGoogle Scholar
  16. Harrison LM, Kastin AJ, Weber JT, Banks WA, Hurley DL, Zadina JE (1994) The opiate system in invertebrates. Peptides 15:1309–1329CrossRefPubMedGoogle Scholar
  17. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210CrossRefPubMedGoogle Scholar
  18. Kalil-Gaspar P, Marcuzzo S, Rigon P, Molina CG, Achaval M (2007) Capsaicin-induced avoidance behavior in the terrestrial Gastropoda Megalobulimus abbreviatus: evidence for TRPV-1 signaling and opioid modulation in response to chemical noxious stimuli. Comp Biochem Physiol A Mol Integr Physiol 148:286–291CrossRefPubMedGoogle Scholar
  19. Kavaliers M, Hirst M (1985) FMRFamide, a putative endogenous opiate antagonist: evidence from suppression of defeat-induced analgesia and feeding in mice. Neuropeptides 6:485–494CrossRefPubMedGoogle Scholar
  20. Kavaliers M, Perrot-Sinal TS (1996) Pronociceptive effects of the neuropeptide, nociceptin, in the land snail, Cepaea nemoralis. Peptides 17:763–768CrossRefPubMedGoogle Scholar
  21. Kavaliers M, Hirst M, Teskey GC (1983) A functional role for an opiate system in snail thermal behavior. Science 220:99–101CrossRefPubMedGoogle Scholar
  22. Kavaliers M, Choleris E, Prato FS, Ossenkopp KP (1998) Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60-Hz magnetic fields in the land snail. Brain Res 809:50–57CrossRefPubMedGoogle Scholar
  23. Kavaliers M, Colwell DD, Choleris E (1999) Parasites and behavior: an ethopharmacological analysis and biomedical implications. Neurosci Biobehav Rev 23:1037–1045CrossRefPubMedGoogle Scholar
  24. Keating CD, Kriek N, Daniels M, Ashcroft NR, Hopper NA, Siney EJ, Holden-Dye L, Burke JF (2003) Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr Biol 13:1715–1720CrossRefPubMedGoogle Scholar
  25. Khan FA, Jain MR, Saha SG, Subhedar N (1998) FMRFamide-like immunoreactivity in the olfactory system responds to morphine treatment in the teleost Clarias batrachus: involvement of opiate receptors. Gen Comp Endocrinol 110:79–87CrossRefPubMedGoogle Scholar
  26. Kreienkamp H-J, Larusson HJ, Witte I, Roeder T, Birgul N, Honck H-H, Harder S, Ellinghausen G, Buck F, Richter D (2002) Functional annotation of two orphan G-protein-coupled receptors, Drostar1 and -2, from Drosophila melanogaster and their ligands by reverse pharmacology. J Biol Chem 277:39937–39943CrossRefPubMedGoogle Scholar
  27. Leung MK, Dissous C, Capron A, Woldegaber H, Duvaux-Miret O, Pryor S, Stefano GB (1995) Schistosoma mansoni: the presence and potential use of opiate-like substances. Exp Parasitol 81:208–215CrossRefPubMedGoogle Scholar
  28. Li C, Nelson LS, Kim K, Nathoo A, Hart AC (1999) Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 897:239–252CrossRefPubMedGoogle Scholar
  29. Liu Y, Shenouda D, Bilfinger TV, Stefano ML, Magazine HI, Stefano GB (1996) Morphine stimulates nitric oxide release from invertebrate microglia. Brain Res 722:125–131CrossRefPubMedGoogle Scholar
  30. Lozada M, Romano A, Maldonado H (1988) Effect of morphine and naloxone on a defensive response of the crab Chasmagnathus granulatus. Pharmacol Biochem Behav 30:635–640CrossRefPubMedGoogle Scholar
  31. Makman MH (1994) Morphine receptors in immunocytes and neurons. Adv Neuroimmunol 4:69–82CrossRefPubMedGoogle Scholar
  32. Maldonado H, Romano A, Lozada M (1989) Opioid action on response level to a danger stimulus in the crab (Chasmagnathus granulatus). Behav Neurosci 103:1139–1143CrossRefPubMedGoogle Scholar
  33. Nieto-Fernandez FE, Mattocks D, Cavani F, Salzet M, Stefano GB (1999) Morphine coupling to invertebrate immunocyte nitric oxide release is dependent on intracellular calcium transients. Comp Biochem Physiol B Biochem Mol Biol 123:295–299CrossRefPubMedGoogle Scholar
  34. Pryor SC, Elizee R (2000) Evidence of opiates and opioid neuropeptides and their immune effects in parasitic invertebrates representing three different phyla: schistosoma mansoni, Theromyzon tessulatum, Trichinella spiralis. Acta Biol Hung 51:331–341PubMedGoogle Scholar
  35. Pryor SC, Nieto F, Henry S, Sarfo J (2007) The effect of opiates and opiate antagonists on heat latency response in the parasitic nematode Ascaris suum. Life Sci 80:1650–1655CrossRefPubMedGoogle Scholar
  36. Renaud FL, Colon I, Lebron J, Ortiz N, Rodriguez F, Cadilla C (1995) A novel opioid mechanism seems to modulate phagocytosis in Tetrahymena. J Eukaryot Microbiol 42:205–207CrossRefPubMedGoogle Scholar
  37. Renaud FL, Chiesa R, Rodriguez F, Tomassini N, Marino M (1996) Studies on the opioid mechanism in Tetrahymena. Prog Mol Subcell Biol 17:29–39PubMedGoogle Scholar
  38. Renzelli-Cain R, Kaloustian KV (1995) Evidence for the involvement of opioid peptides in phagocytosis, conformation, granulation and aggregation of immunocompetent Lumbricus terrestris amoebocytes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 111:205–211CrossRefPubMedGoogle Scholar
  39. Romano A, Lozada M, Maldonado H (1990) Effect of naloxone pretreatment on habituation in the crab chasmagnathus granulatus. Behav Neural Biol 53:113–122CrossRefPubMedGoogle Scholar
  40. Romero SMB, Hoffmann A, Menescal-de-Oliveira L (1994) Is there an opiate receptor in the snail Megalobulimus sanctipauli? Action of morphine and naloxone. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 107:37–40CrossRefGoogle Scholar
  41. Ryu WS, Samuel ADT (2002) Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined thermal stimuli. J Neurosci 22:5727–5733PubMedGoogle Scholar
  42. Salzet M (2001) Neuroimmunology of opioids from invertebrates to human. Neuro Endocrinol Lett 22:467–474PubMedGoogle Scholar
  43. Salzet M, Stefano G (1997a) Prodynorphin in invertebrates. Mol Brain Res 52:46–52CrossRefPubMedGoogle Scholar
  44. Salzet M, Stefano GB (1997b) Invertebrate proenkephalin: delta opioid binding sites in leech ganglia and immunocytes. Brain Res 768:224–232CrossRefPubMedGoogle Scholar
  45. Salzet M, Salzet-Raveillon B, Cocquerelle C, Verger-Bocquet M, Pryor SC, Rialas CM, Laurent V, Stefano GB (1997) Leech immunocytes contain proopiomelanocortin: nitric oxide mediates hemolymph proopiomelanocortin processing. J Immunol 159:5400–5411PubMedGoogle Scholar
  46. Sonetti D, Ottaviani E, Stefano GB (1997) Opiate signaling regulates microglia activities in the invertebrate nervous system. Gen Pharmacol 29:39–47PubMedGoogle Scholar
  47. Stefano GB, Scharrer B (1996) The presence of the mu3 opiate receptor in invertebrate neural tissues. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113:369–373PubMedGoogle Scholar
  48. Stefano GB, Digenis A, Spector S, Leung MK, Bilfinger TV, Makman MH, Scharrer B, Abumrad NN (1993) Opiate-like substances in an invertebrate, an opiate receptor on invertebrate and human immunocytes, and a role in immunosuppression. Proc Natl Acad Sci USA 90:11099–11103CrossRefPubMedGoogle Scholar
  49. Stefano GB, Casares F, Liu U (1995) Naltrindole sensitive delta 2 opioid receptor mediates invertebrate immunocyte activation. Acta Biol Hung 46:321–327PubMedGoogle Scholar
  50. Stefano GB, Cadet P, Rialas CM, Mantione K, Casares F, Goumon Y, Zhu W (2003) Invertebrate opiate immune and neural signaling. Adv Exp Med Biol 521:126–147PubMedGoogle Scholar
  51. Stevens CW (2004) Opioid research in amphibians: an alternative pain model yielding insights on the evolution of opioid receptors. Brain Res Rev 46:204–215CrossRefPubMedGoogle Scholar
  52. Tang J, Yang HY, Costa E (1984) Inhibition of spontaneous and opiate-modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proc Natl Acad Sci USA 81:5002–5005CrossRefPubMedGoogle Scholar
  53. Wittenburg N, Baumeister R (1999) Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. Proc Natl Acad Sci USA 96:10477–10482CrossRefPubMedGoogle Scholar
  54. Yang HY, Fratta W, Majane EA, Costa E (1985) Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc Natl Acad Sci USA 82:7757–7761CrossRefPubMedGoogle Scholar
  55. Zabala NA, Gomez MA (1991) Morphine analgesia, tolerance and addiction in the cricket Pteronemobius sp. (Orthoptera, Insecta). Pharmacol Biochem Behav 40:887–891CrossRefPubMedGoogle Scholar
  56. Zhu W, Pryor SC, Putnam J, Cadet P, Stefano GB (2004) Opiate alkaloids and nitric oxide production in the nematode Ascaris suum. J Parasitol 90:15–22CrossRefPubMedGoogle Scholar
  57. Zipser B, Ruff MR, O’Neill JB, Smith CC, Higgins WJ, Pert CB (1988) The opiate receptor: a single 110 kDa recognition molecule appears to be conserved in Tetrahymena, leech, and rat. Brain Res 463:296–304CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • F. Nieto-Fernandez
    • 1
  • S. Andrieux
    • 1
  • S. Idrees
    • 1
  • C. Bagnall
    • 1
  • S. C. Pryor
    • 1
  • R. Sood
    • 1
  1. 1.SUNY College at Old WestburyOld WestburyUSA

Personalised recommendations