Invertebrate Neuroscience

, Volume 8, Issue 1, pp 19–29 | Cite as

Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains

  • Guillaume Stéphane Barbara
  • Bernd Grünewald
  • Sandrine Paute
  • Monique Gauthier
  • Valérie Raymond-DelpechEmail author
Original Paper


In insects, acetylcholine (ACh) is the main neurotransmitter, and nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee, nAChRs are expressed in diverse structures including the primary olfactory centres of the brain, the antennal lobes (AL) and the mushroom bodies. Whole-cell, voltage-clamp recordings were used to characterize the nAChRs present on cultured AL cells from adult honeybee, Apis mellifera. In 90% of the cells, applications of ACh induced fast inward currents that desensitized slowly. The classical nicotinic agonists nicotine and imidacloprid elicited respectively 45 and 43% of the maximum ACh-induced currents. The ACh-elicited currents were blocked by nicotinic antagonists methyllycaconitine, dihydroxy-β-erythroidine and α-bungarotoxin. The nAChRs on adult AL cells are cation permeable channels. Our data indicate the existence of functional nAChRs on adult AL cells that differ from nAChRs on pupal Kenyon cells from mushroom bodies by their pharmacological profile and ionic permeability, suggesting that these receptors could be implicated in different functions.


Nicotinic acetylcholine receptor Insect Patch clamp Apis mellifera Antennal lobe 



The authors thank M. Moreau for help on ion permeability determination; M. Lambin, C. Armengaud, J. M. Devaud and J. C. Sandoz for suggestions on figures and manuscript; and M. Bazelot for kindly sharing cell cultures. G. S. Barbara was supported by a doctoral grant from the French Ministry of Scientific Research and Education. This work benefited from financial support of the European Community in the frame of the Apiculture Program 2007, Agreement 07–09 between Vinifhlor, CNRS and UPS.


  1. Adams DJ, Nutter TJ (1992) Calcium permeability and modulation of nicotinic acetylcholine receptor-channels in rat parasympathetic neurons. J Physiol Paris 86:67–76PubMedCrossRefGoogle Scholar
  2. Albert JL, Lingle CJ (1993) Activation of nicotinic acetylcholine receptors on cultured Drosophila and other insect neurones. J Physiol 463:605–630PubMedGoogle Scholar
  3. Bai D, Erdbrugger H, Breer H, Sattelle DB (1992) Acetylcholine receptors of thoracic dorsal midline neurones in the cockroach, Periplaneta americana. Arch Insect Biochem Physiol 21:289–301CrossRefGoogle Scholar
  4. Barbara GS, Zube C, Rybak J, Gauthier M, Grünewald B (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:823–836PubMedCrossRefGoogle Scholar
  5. Belzunces LP, Toutant JP, Bounias M (1988) Acetylcholinesterase from Apis mellifera head. Evidence for amphiphilic and hydrophilic forms characterized by Triton X-114 phase separation. Biochem J 255:463–470PubMedGoogle Scholar
  6. Benson JA (1992) Electrophysiological pharmacology of the nicotinic and muscarinic cholinergic responses of isolated neuronal somata from locust thoracic ganglia. J Exp Biol 170:203–233Google Scholar
  7. Bicker G (1996) Transmitter-induced calcium signalling in cultured neurons of the insect brain. J Neurosci Methods 69:33–41PubMedCrossRefGoogle Scholar
  8. Bicker G (1999) Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Tech 45:174–183CrossRefGoogle Scholar
  9. Bicker G, Kreissl S (1994) Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. J Neurophysiol 71:808–810PubMedGoogle Scholar
  10. Brown LA, Ihara M, Buckingham SD, Matsuda K, Sattelle DB (2006) Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J Neurochem 99:608–615PubMedCrossRefGoogle Scholar
  11. Cayre M, Buckingham SD, Yagodin S, Sattelle DB (1999) Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine, and dopamine. J Neurophysiol 81:1–14PubMedGoogle Scholar
  12. Courjaret R, Grolleau F, Lapied B (2003) Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an α-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur J Neurosci 17:2023–2034PubMedCrossRefGoogle Scholar
  13. Dacher M, Lagarrigue A, Gauthier M (2005) Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 130:37–50PubMedCrossRefGoogle Scholar
  14. David JA, Sattelle DB (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta americana). J Exp Biol 108:119–136Google Scholar
  15. David JA, Pitman RM (1993) The pharmacology of a-bungarotoxin-resistant acetylcholine receptors on an identified cockroach motoneurone. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 172:359–368CrossRefGoogle Scholar
  16. Davies CW (1962) Ion association. Butterworths, LondonGoogle Scholar
  17. Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16PubMedCrossRefGoogle Scholar
  18. Devaud JM, Masson C (1999) Dendritic pattern development of the honeybee antennal lobe neurons: a laser scanning confocal microscopic study. J Neurobiol 39:461–474PubMedCrossRefGoogle Scholar
  19. Devaud JM, Quenet B, Gascuel J, Masson C (1994) A morphometric classification of pupal honeybee antennal lobe neurones in culture. Neuroreport 6:214–218PubMedCrossRefGoogle Scholar
  20. Dwoskin LP, Crooks PA (2001) Competitive neuronal nicotinic receptor antagonists: a new direction for drug discovery. J Pharmacol Exp Ther 298:395–402PubMedGoogle Scholar
  21. Fickbohm D, Trimmer BA (2003) Antisense inhibition of neuronal nicotinic receptors in the tobacco-feeding insect, Manduca sexta. Arch Insect Biochem Physiol 53:172–185PubMedCrossRefGoogle Scholar
  22. Flanagan D, Mercer AR (1989) Morphology and response characteristics of neurones in the deutocerebrum of the brain in the honeybee Apis mellifera. J Comp Physiol A 164:483–494CrossRefGoogle Scholar
  23. Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35:1–8PubMedCrossRefGoogle Scholar
  24. Galzi JL, Bertrand S, Corringer PJ, Changeux JP, Bertrand D (1996) Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. Embo J 15:5824–5832PubMedGoogle Scholar
  25. Gauthier M, Dacher M, Thany SH, Niggebrugge C, Déglise P, Kljucevic P, Armengaud C, Grünewald B (2006) Involvement of α-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn MemGoogle Scholar
  26. Goldberg F, Grünewald B, Rosenboom H, Menzel R (1999) Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J Physiol 514(Pt 3):759–768PubMedCrossRefGoogle Scholar
  27. Goodman CS, Spitzer NC (1980) Embryonic development of neurotransmitter receptors in grasshoppers. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland Biochemical, Amsterdam, pp 195–207Google Scholar
  28. Gorczyca M, Hall JC (1984) Identification of a cholinergic synapse in the giant fiber pathway of Drosophila using conditional mutations of acetylcholine synthesis. J Neurogenet 1:289–313PubMedCrossRefGoogle Scholar
  29. Green WN, Andersen OS (1991) Surface charges and ion channel function. Annu Rev Physiol 53:341–359PubMedCrossRefGoogle Scholar
  30. Grünewald B (2003) Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway. J Exp Biol 206:117–129PubMedCrossRefGoogle Scholar
  31. Grünewald B, Wersing A, Wustenberg DG (2004) Learning channels: cellular physiology of odor processing neurons within the honeybee brain. Acta Biol Hung 55:53–63PubMedCrossRefGoogle Scholar
  32. Gu H, O’Dowd DK (2006) Cholinergic synaptic transmission in adult Drosophila Kenyon cells in situ. J Neurosci 26:265–272PubMedCrossRefGoogle Scholar
  33. Gundelfinger ED (1992) How complex is the nicotinic receptor system of insects? Trends Neurosci 15:206–211PubMedCrossRefGoogle Scholar
  34. Gundelfinger ED, Schulz R (2000) Insect nicotinic acetylcholine receptors: genes, structure, physiological and pharmacological properties. In: Clementi F, Fornasari D, Gotti C (eds) Handbook of experimental pharmacology, neuronal nicotinic receptors. Springer, Berlin, pp 496–521Google Scholar
  35. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100PubMedCrossRefGoogle Scholar
  36. Harrow ID, Sattelle DB (1983) Acetylcholine receptors on the cell body membrane of giant interneurone 2 in the cockroach, Periplaneta americana. J Exp Biol 105:339–350Google Scholar
  37. Hermsen B, Stetzer E, Thees R, Heiermann R, Schrattenholz A, Ebbinghaus U, Kretschmer A, Methfessel C, Reinhardt S, Maelicke A (1998) Neuronal nicotinic receptors in the locust Locusta migratoria: cloning and expression. J Biol Chem 273:18394–18404PubMedCrossRefGoogle Scholar
  38. Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631PubMedCrossRefGoogle Scholar
  39. Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:4–7Google Scholar
  40. Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209PubMedCrossRefGoogle Scholar
  41. Homberg U, Hoskins SG, Hildebrand JG (1995) Distribution of acetylcholinesterase activity in the deutocerebrum of the sphinx moth Manduca sexta. Cell Tissue Res 279:249–259PubMedGoogle Scholar
  42. Jackson C, Bermudez I, Beadle DJ (2002) Pharmacological properties of nicotinic acetylcholine receptors in isolated Locusta migratoria neurones. Microsc Res Tech 56:249–255PubMedCrossRefGoogle Scholar
  43. Jan LY, Jan YN (1976) L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J Physiol 262:215–236PubMedGoogle Scholar
  44. Jepson JE, Brown LA, Sattelle DB (2006) The actions of the neonicotinoid imidacloprid on cholinergic neurons of Drosophila melanogaster. Invert Neurosci 6:33–40PubMedCrossRefGoogle Scholar
  45. Jones AK, Raymond-Delpech V, Thany SH, Gauthier M, Sattelle DB (2006) The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res 16:1422–1430PubMedCrossRefGoogle Scholar
  46. Kirschner S, Kleineidam CJ, Zube C, Rybak J, Grünewald B, Rossler W (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J Comp Neurol 499:933–952PubMedCrossRefGoogle Scholar
  47. Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463PubMedGoogle Scholar
  48. Kreissl S, Bicker G (1989) Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J Comp Neurol 286:71–84PubMedCrossRefGoogle Scholar
  49. Kreissl S, Bicker G (1992) Dissociated neurons of the pupal honeybee brain in cell culture. J Neurocytol 21:545–556PubMedCrossRefGoogle Scholar
  50. Lapied B, Le Corronc H, Hue B (1990) Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res 533:132–136PubMedCrossRefGoogle Scholar
  51. Lecchi M, Marguerat A, Ionescu A, Pelizzone M, Renaud P, Sommerhalder J, Safran AB, Tribollet E, Bertrand D (2004) Ganglion cells from chick retina display multiple functional nAChR subtypes. Neuroreport 15:307–311PubMedCrossRefGoogle Scholar
  52. Lozano VC, Bonnard E, Gauthier M, Richard D (1996) Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behav Brain Res 81:215–222PubMedCrossRefGoogle Scholar
  53. Lozano VC, Armengaud C, Gauthier M (2001) Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol [A] 187:249–254CrossRefGoogle Scholar
  54. Matsuda K, Shimomura M, Kondo Y, Ihara M, Hashigami K, Yoshida N, Raymond V, Mongan NP, Freeman JC, Komai K, Sattelle DB (2000) Role of loop D of the α7 nicotinic acetylcholine receptor in its interaction with the insecticide imidacloprid and related neonicotinoids. Br J Pharmacol 130:981–986PubMedCrossRefGoogle Scholar
  55. McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–546PubMedCrossRefGoogle Scholar
  56. Millar NS (2003) Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem Soc Trans 31:869–874PubMedCrossRefGoogle Scholar
  57. Nauen R, Ebbinghaus-Kintscher U, Schmuck R (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci 57:577–586PubMedCrossRefGoogle Scholar
  58. Orr N, Shaffner AJ, Watson GB (1997) Pharmacological characterization of an epibatidine binding site in the nerve cord of Periplaneta americana. Pesticide Biochem Physiol 58:183–192CrossRefGoogle Scholar
  59. Osborne RH (1996) Insect neurotransmission: neurotransmitters and their receptors. Pharmacol Ther 69:117–142PubMedCrossRefGoogle Scholar
  60. Pelz C, Jander J, Rosenboom H, Hammer M, Menzel R (1999) IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. J Neurophysiol 81:1749–1759PubMedGoogle Scholar
  61. Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117PubMedGoogle Scholar
  62. Salgado VL, Saar R (2004) Desensitizing and non-desensitizing subtypes of α-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J Insect Physiol 50:867–879PubMedCrossRefGoogle Scholar
  63. Sands SB, Barish ME (1991) Calcium permeability of neuronal nicotinic acetylcholine receptor channels in PC12 cells. Brain Res 560:38–42PubMedCrossRefGoogle Scholar
  64. Sands SB, Barish ME (1992) Neuronal nicotinic acetylcholine receptor currents in phaeochromocytoma (PC12) cells: dual mechanisms of rectification. J Physiol 447:467–487PubMedGoogle Scholar
  65. Schafer S, Rosenboom H, Menzel R (1994) Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci 14:4600–4612PubMedGoogle Scholar
  66. Scheidler A, Kaulen P, Bruning G, Erber J (1990) Quantitative autoradiographic localization of [125I] α-bungarotoxin binding sites in the honeybee brain. Brain Res 534:332–335PubMedCrossRefGoogle Scholar
  67. Schmidt H, Luer K, Hevers W, Technau GM (2000) Ionic currents of Drosophila embryonic neurons derived from selectively cultured CNS midline precursors. J Neurobiol 44:392–413PubMedCrossRefGoogle Scholar
  68. Sharples CGV, Wonnacott S (2001) Neuronal nicotinic receptors. Tocris reviews, vol 19Google Scholar
  69. Thany SH, Lenaers G, Crozatier M, Armengaud C, Gauthier M (2003) Identification and localization of the nicotinic acetylcholine receptor α3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol Biol 12:255–262PubMedCrossRefGoogle Scholar
  70. Thany SH, Crozatier M, Raymond-Delpech V, Gauthier M, Lenaers G (2005) Apisα2, Apisα7–1 and Apisα7–2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene 344:125–132PubMedCrossRefGoogle Scholar
  71. Thany SH, Lenaers G, Raymond-Delpech V, Sattelle DB, Lapied B (2007) Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 28:14–22PubMedCrossRefGoogle Scholar
  72. The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 442:931Google Scholar
  73. Tomizawa M, Casida JE (2001) Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manag Sci 57:914–922PubMedCrossRefGoogle Scholar
  74. Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364PubMedCrossRefGoogle Scholar
  75. van den Beukel I, van Kleef RG, Oortgiesen M (1998) Differential effects of physostigmine and organophosphates on nicotinic receptors in neuronal cells of different species. Neurotoxicology 19:777–787PubMedGoogle Scholar
  76. Van Eyseren I, Guillet JC, Le Guen J, Tiaho F, Pichon Y (1998) Effects of nicotinic and muscarinic ligands on embryonic neurones of Periplaneta americana in primary culture: a whole cell clamp study. J Insect Physiol 44:227–240PubMedCrossRefGoogle Scholar
  77. Verbitsky M, Rothlin CV, Katz E, Elgoyhen AB (2000) Mixed nicotinic-muscarinic properties of the α9 nicotinic cholinergic receptor. Neuropharmacology 39:2515–2524PubMedCrossRefGoogle Scholar
  78. Vermehren A, Qazi S, Trimmer BA (2001) The nicotinic α subunit MARA1 is necessary for cholinergic evoked calcium transients in Manduca neurons. Neurosci Lett 313:113–116PubMedCrossRefGoogle Scholar
  79. Vermehren A, Trimmer BA (2005) Expression and function of two nicotinic subunits in insect neurons. J Neurobiol 62:289–298PubMedCrossRefGoogle Scholar
  80. Weiss JN (1997) The Hill equation revisited: uses and misuses. Faseb J 11:835–841PubMedGoogle Scholar
  81. Wustenberg DG, Grünewald B (2004) Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:807–821PubMedCrossRefGoogle Scholar
  82. Yasuyama K, Meinertzhagen IA, Schurmann FW (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445:211–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Guillaume Stéphane Barbara
    • 1
  • Bernd Grünewald
    • 2
  • Sandrine Paute
    • 1
  • Monique Gauthier
    • 1
  • Valérie Raymond-Delpech
    • 1
    Email author
  1. 1.Centre de Recherches sur la Cognition Animale-CNRSUniversité Paul SabatierToulouseFrance
  2. 2.Institut für Biologie AG NeurobiologieFreie Universität BerlinBerlinGermany

Personalised recommendations