Invertebrate Neuroscience

, Volume 7, Issue 3, pp 173–178 | Cite as

Actions of snake neurotoxins on an insect nicotinic cholinergic synapse

  • Bernard Hue
  • Steven D. Buckingham
  • David Buckingham
  • David B. Sattelle
Original Paper


Here we examine the actions of six snake neurotoxins (α-cobratoxin from Naja naja siamensis, erabutoxin-a and b from Laticauda semifasciata; CM12 from N. haje annulifera, toxin III 4 from Notechis scutatus and a long toxin from N. haje) on nicotinic acetylcholine receptors in the cercal afferent, giant interneurone 2 synapse of the cockroach, Periplaneta americana. All toxins tested reduced responses to directly-applied ACh as well as EPSPs evoked by electrical stimulation of nerve XI with similar time courses, suggesting that their action is postsynaptic. Thus, these nicotinic receptors in a well-characterized insect synapse are senstive to both long and short chain neurotoxins. This considerably expands the range of snake toxins that block insect nicotinic acetylcholine receptors and may enable further pharmacological distinctions between nAChR subtypes.


Snake neurotoxins Nicotinic acetylcholine receptors Insect central nervous system 



The authors are indebted to Prof. R. E. Hider, Pharmaceutical Science Research Division, 5th floor Franklin-Wilkins Building, King’s College London, 150 Stamford Street, London SE1 9NH for the generous provision of the snake toxin samples used in this study.


  1. Antil S, Servent D, Menez A (1999) Variability among the sites by which curaremimetic toxins bind to Torpedo acetylcholine receptor, as revealed by identification of the functional residues of alpha-cobratoxin. J Biol Chem 274:34851–34858PubMedCrossRefGoogle Scholar
  2. Buckingham S, Lapied B, Corronc H, Sattelle DB (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200:2685–2692PubMedGoogle Scholar
  3. Buckingham SD, Hue B, Sattelle DB (1994) Actions of bicuculline on cell body and neuropilar membranes of identified insect neurones. J Exp Biol 186:235–244PubMedGoogle Scholar
  4. Callec JJ, Sattelle DB (1973) A simple technique for monitoring the synaptic actions of pharmacological agents. J Exp Biol 59:725–738PubMedGoogle Scholar
  5. Changeux JP, Mikoshiba K (1978) Genetic and ‘epigenetic’ factors regulating synapse formation in vertebrate cerebellum and neuromuscular junction. Prog Brain Res 48:43–66PubMedCrossRefGoogle Scholar
  6. Chiappinelli VA, Hue B, Mony L, Sattelle DB (1989) κ-bungarotoxin blocks nicotinic transmission at an identified invertebrate central synapse. J Exp Biol 141:61–71PubMedGoogle Scholar
  7. Chicheportiche R, Vincent JP, Kopeyan C, Schweitz H, Lazdunski M (1975) Structure-function relationship in the binding of snake neurotoxins to the Torpedo membrane receptor. Biochemistry 14:2081–2091PubMedCrossRefGoogle Scholar
  8. Conti-Tronconi BM, Hunkapiller MW, Lindstrom JM, Raftery MA (1982) Subunit structure of the acetylcholine receptor from Electrophorus electricus. PNAS 79:6489–6493PubMedCrossRefGoogle Scholar
  9. Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 5:847–856PubMedCrossRefGoogle Scholar
  10. Daley DL, Vardi N, Appignani B, Camhi JM (1981) Morphology of the giant interneurons and cercal nerve projections of the American cockroach. J Comp Neurol 196:41–52PubMedCrossRefGoogle Scholar
  11. David JA, Sattelle DB (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta americana). J Exp Biol 108:119–136Google Scholar
  12. Dufton MJ, Hider RC (1977) Snake toxin secondary structure predictions. Structure activity relationships. J Mol Biol 115:177–193PubMedCrossRefGoogle Scholar
  13. Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715PubMedCrossRefGoogle Scholar
  14. Endo T, Nakanishi M, Furukawa S, Joubert FJ, Tamiya N, Hayashi K (1986) Stopped-flow fluorescence studies on binding kinetics of neurotoxins with acetylcholine receptor. Biochemistry 25:395–404PubMedCrossRefGoogle Scholar
  15. Gotti C, Hanke W, Maury K, Moretti M, Ballivet M, Clementi F, Bertrand D (1994) Pharmacology and biophysical properties of α7 and α7–α8 alpha-bungarotoxin receptor subtypes immunopurified from the chick optic lobe. Eur J Neurosci 6:1281–1291PubMedCrossRefGoogle Scholar
  16. Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dα5, Dα6 and Dα7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160:1519–1533PubMedGoogle Scholar
  17. Harrow ID, Hue B, Pelhate M, Sattelle DB (1980) Cockroach giant interneurones stained by cobalt-backfilling of dissected axons. J Exp Biol 84:341–343PubMedGoogle Scholar
  18. Ihara M, Matsuda K, Shimomura M, Sattelle DB, Komai K (2004) Super agonist actions of clothianidin and related compounds on the SAD/beta 2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Biosci Biotechnol Biochem 68:761–763PubMedCrossRefGoogle Scholar
  19. Jones AK, Brown LA, Sattelle DB (2007) Insect nicotinic acetylcholine receptor gene families: from genetic model organism to vector, pest and beneficial species. Invert Neurosci 7:67–73PubMedCrossRefGoogle Scholar
  20. Kehoe J, McIntosh JM (1998) Two distinct nicotinic receptors, one pharmacologically similar to the vertebrate α7-containing receptor, mediate Cl currents in Aplysia neurons. J Neurosci 18:8198–8213PubMedGoogle Scholar
  21. Kehoe J, Sealock R, Bon C (1976) Effects of alpha-toxins from Bungarus multicinctus and Bungarus caeruleus on cholinergic responses in Aplysia neurons. Brain Res 107:527–540PubMedCrossRefGoogle Scholar
  22. Konstantakaki M, Changeux J-P, Taly A (2007) Docking of α-cobratoxin suggests a basal conformation of the nicotinic receptor. Biochem Biophys Res Commun 359:413–418PubMedCrossRefGoogle Scholar
  23. Lane NJ, Swales LS, David JA, Sattelle DB (1982) Differential accessibility to two insect neurones does not account for differences in sensitivity to alpha-bungarotoxin. Tissue Cell 14:489–500PubMedCrossRefGoogle Scholar
  24. Lee CY (1979) Recent advances in chemistry and pharmacology of snake toxins. Adv Cytopharmacol 3:1–16PubMedGoogle Scholar
  25. Marshall J, Buckingham SD, Shingai R, Lunt GG, Goosey MW, Darlison MG, Sattelle DB, Barnard EA (1990) Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. EMBO J 9:4391–4398PubMedGoogle Scholar
  26. Miledi R, Molinoff P, Potter LT (1971) Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature 229:554–557PubMedCrossRefGoogle Scholar
  27. Mordvintsev DY, Polyak YL, Levtsova OV, Tourleigh YV, Kasheverov IE, Shaitan KV, Utkin YN, Tsetlin VI (2005) A model for short α-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain α-neurotoxins and α-conotoxins. Comput Biol Chem 29:398–411PubMedCrossRefGoogle Scholar
  28. Nirthanan S, Gwee MC (2004) Three-finger α-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharmacol Sci 94:1–17PubMedCrossRefGoogle Scholar
  29. Pichon Y, Callec JJ (1970) Further studies on synaptic transmission in insects: I. External recording of synaptic potentials in a single giant axon of the cockroach, Periplaneta americana L. J Exp Biol 52:257–265PubMedGoogle Scholar
  30. Pinnock RD, Lummis SCR, Chiappinelli VA, Sattelle DB (1988) κ-Bungarotoxin blocks an α-bungarotoxin-sensitive nicotinic receptor in the insect central nervous system. Brain Res 458:45–52PubMedCrossRefGoogle Scholar
  31. Raymond-Delpech V, Ihara M, Coddou C, Matsuda K, Sattelle DB (2003) Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Invert Neurosci 5:29–35PubMedCrossRefGoogle Scholar
  32. Sattelle DB (1980) Acetycholine receptors of insects. Treherne JE, Berridge MJ, London WVB (eds) Advances in Insect Physiology. Academic, New York, p 15Google Scholar
  33. Sattelle DB, Harrow ID, Hue B, Pelhate M, Gepner JI, Hall LM (1983) α-Bungarotoxin Blocks excitatory synaptic transmission between cercal sensory neurones and Giant Interneurone 2 of the cockroach, Peripianeta americana. J Exp Biol 107:473–489Google Scholar
  34. Servent D, Winckler-Dietrich V, Hu H-Y, Kessler P, Drevet P, Bertrand D, Menez A (1997) Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal α7 nicotinic receptor. J Biol Chem 272:24279–24286PubMedCrossRefGoogle Scholar
  35. Shain W, Greene LA, Carpenter DO, Sytkowski AJ, Vogel Z (1974) Aplysia acetylcholine receptors: blockade by and binding of α-bungarotoxin. Brain Res 72:225–240PubMedCrossRefGoogle Scholar
  36. Sobel A, Weber M, Changeux JP (1977) Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur J Biochem 80:215–224PubMedCrossRefGoogle Scholar
  37. Spura A, Riel RU, Freedman ND, Agrawal S, Seto C, Hawrot E (2000) Biotinylation of substituted cysteines in the nicotinic acetylcholine receptor reveals distinct binding modes for alpha-bungarotoxin and erabutoxin a. J Biol Chem 275:22452–22460PubMedCrossRefGoogle Scholar
  38. Takacs Z, Wilhelmsen KC, Sorota S (2004) Cobra (Naja spp.) nicotinic acetylcholine receptor exhibits resistance to Erabu sea snake (Laticauda semifasciata) short-chain alpha-neurotoxin. J Mol Evol 58:516–526PubMedCrossRefGoogle Scholar
  39. Tsetlin V, Shelukhina I, Kryukova E, Burbaeva G, Starodubtseva L, Skok M, Volpina O, Utkin Y (2007) Detection of α7 nicotinic acetylcholine receptors with the aid of antibodies and toxins. Life Sci 80:2202–2205PubMedCrossRefGoogle Scholar
  40. Tsetlin VI, Hucho F (2004) Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications. FEBS Lett 557:9–13PubMedCrossRefGoogle Scholar
  41. Vincent A, Jacobson L, Curran L (1998) Alpha-Bungarotoxin binding to human muscle acetylcholine receptor: measurement of affinity, delineation of AChR subunit residues crucial to binding, and protection of AChR function by synthetic peptides. Neurochem Int 32:427–433PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bernard Hue
    • 1
  • Steven D. Buckingham
    • 2
  • David Buckingham
    • 2
  • David B. Sattelle
    • 2
  1. 1.Laboratoire de Physiologie, Faculté de MédécineUniversité d’AngersAngers CedexFrance
  2. 2.MRC Functional Genetics Unit, Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations